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Abstract 

 
This paper presents a system concept for efficient fall 

detection in real-time for elderly security in ambient 
assisted living applications. Event-driven sensors are 
biologically-inspired and autonomously reacting to scene 
dynamics and generating events upon relative light 
intensity change. Their wide dynamic range and high 
temporal resolution properties enable efficient activity 
monitoring in natural environment. Using a stereo pair of 
event-driven sensor chip, it is possible to represent the 
scene dynamics in a 3D volume at high temporal 
resolution. Therefore, the person’s activity in a home 
environment can be efficiently recorded, with a low data 
volume and high temporal resolution that allows efficient 
incident detection, like person’s falls. In this paper, a 
dataset with scenarios including 68 person’s falls has 
been analyzed for real-time detection with event-driven 
stereo vision systems and the results are promising. 
 

1. Introduction 
Assisted living systems can be subdivided in non-vision 

and vision systems. RFID tags [13] and accelerometers [8] 
are examples of non-vision systems. They allow the 
detection of activities (walking, running, walking stairs), 
to count steps, to estimate the distance walked [4] and to 
detect falls [14][15]. Their main disadvantage is their 
contact with the body of elderly persons as they have to 
wear sensors and tags, which can be forgotten or lost 
easily. Furthermore, tags are usually taken off by the 
supported person during activities such as taking a bath or 
a shower, where on the other hand the probability for 
incidents like falls is high.  

Vision systems mainly consist of cameras performing 
visual surveillance and the detection of activities. Besides 
the privacy issue, regular camera systems provide 
insufficient spatial information in locating an object in a 
room out of a sequence of frames. Stereo vision systems 
have the advantage to provide information on the distance 
between object and camera and thus, 3D positions of 

objects can be calculated. However, correct spatial 
information relies on the automatic matching between 
corresponding pixels in each image. This process is 
computationally expensive; moreover, it is not always 
reliable. For instance, pixels in low texture areas are very 
hard to match. 

The biologically-inspired (neuromorphic) dynamic 
vision sensors [5] feature massively parallel pre-
processing of the visual information in on-chip analogue 
circuits and stand out for their excellent temporal 
resolution, wide dynamic range and low power 
consumption. These vision sensors are event-driven and 
have the property to be less sensitive to illumination 
conditions than traditional frame-based sensors as well as 
they protect privacy to a certain extent. Furthermore, these 
sensors involve a drastic reduction of the data volume, 
compared to frame-based sensors and efficiently capture 
scene dynamics [1][3][6]. Therefore, stereo vision can be 
performed very efficiently and at low-cost with the 
neuromorphic dynamic vision sensor. 

This paper presents a compact and low-cost stereo 
vision system for easy deployment and intelligent 
monitoring and fall detection in ambient assisted living 
applications. This system integrates the neuromorphic 
vision technology with an embedded processing unit and 
communication technology. An analysis of the 
asynchronously generated events for person’s activity 
including incidents (like fall) has been performed for real 
time detection. The events of the stereo vision sensor are 
represented in a spatiotemporal domain. The fall detection 
method and its implementation on the Blackfin BF 537 
from Analog Device are analyzed for real-time indoor 
monitoring scenarios towards a compact remote stand-
alone 3D vision system. The paper is structured as 
follows: Section 2 provides a brief review of the 
architecture of the event-based 3D vision system including 
core algorithms. Examples of real recording of falls in a 
lab environment using the Dynamic Vision Sensor (DVS) 
system are shown in section 3. The analysis of falls and 
detection method are discussed in section 4 including 
evaluation results.  A summary is provided in section 5 to 
conclude the paper. 

 
Event-driven Stereo Vision for Fall Detection 

 
 

Ahmed Nabil Belbachir, Member IEEE, Stephan Schraml, Aneta Nowakowska  
New Sensor Technologies, Safety & Security Department, AIT Austrian Institute of Technology 

Donau-City Strasse 1/5, A-1220, Vienna Austria. 
{ nabil.belbachir ; stephan.schraml ; aneta.nowakowska}@ait.ac.at 



   
 
 

79 

2. Dynamic Stereo Vision Sensor 
This section briefly describes the existing dynamic 

stereo vision sensor reported in [2][10][12] including data 
examples generated by the system. The system, including 
the sensor board, DVS chip and DSP board, is depicted in 
Figure 1. It includes two DVSs as sensing elements [5], a 
buffer unit consisting of a multiplexer (MUX) and First-In 
First-Out (FIFO) memory, and a digital signal processor 
(DSP) as processing unit.  

This DVS consists of an array of 128x128 pixels, built 
in a standard 0.35µm CMOS-technology. The array 
elements (pixels) respond to relative light intensity 
changes by instantaneously sending their address, i.e. their 
position in the pixel matrix, asynchronously over a shared 
15 bit bus to a receiver using a “request-acknowledge” 2-
phase handshake. 

Such address-events (AEs) generated by the sensors 
arrive first at the multiplexer unit. Subsequently, they are 
forwarded to the DSP over a FIFO. The DSP attaches to 
each AE a timestamp at a resolution of 1ms. The 
combined data (AEs and timestamps) are used as input 
stream for 3D map generation and subsequent processing. 

Figure 2 depicts a space-time representation of one 
DVS’ data, resulting from a two persons crossing the 
sensor field of view in a room-like environment. The 
events are represented in a 3 D volume with the 
coordinates x (0:127), y (0:127) and t (last elapsed ms), 
the so-called space-time representation. The bold colored 
dots represents the events generated in the recent 16 ms. 
The blue and red dots represent spike activity generated 
by a sensed light-intensity increase (ON-event) and 
decrease (OFF-event) resulting from the person motions, 
respectively. The small gray dots are the events generated 

in the elapsed 2 seconds prior to the recent 16ms. These 
highlight the event path in the past 2 sec of the moving 
persons, which is an ideal basis for continuous monitoring 
by simultaneous detection and tracking in space and time. 

 
A description of the algorithm for real-time depth 

estimation is given in [10]. Figure 3 shows an example of 
a visual scene imaged by a conventional video camera 
(top left) and its corresponding AEs using a pair of DVSs 
(top middle and top right) rendered in an image-like 
representation. The white and black pixels represent spike 

Figure 2: Event representation of scene dynamics (2 persons 
crossing the field of view) in a space-time domain using 1 
DVS. The data are shown in a room-like representation with 
sensor mounted on the side wall.  

Stereo  
system 

t x

y

Figure 1: Image of the event-driven stereo vision system. In the 
lower left corner the DSP Bf537 and the sensor chip are shown.
The DSP is mounted on the back of the board. 

Figure 3: Still image of a person from a conventional video 
camera (top left); the corresponding events of a pair of dynamic 
vision sensors (top middle and right) and resulting event 
“sparse” depth map (bottom) rendered in an image-like 
representation.
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activity generated by a sensed light-intensity increase 
(ON-event) and decrease (OFF-event) resulting from one 
persons motions, respectively. The gray background 
represents regions with no activity in the scene. The non-
moving parts in the scene do not generate any data. The 
processing unit (DSP) embeds event-based stereo vision 
algorithms, including the depth generation or the so-called 
sparse depth map. The resulting sparse color-coded depth 
map of the scene depicted in Figure 3(left) is provided at 
the bottom in Figure 3.  

 

3. Example of Fall Recordings 
The targeted stereo vision system for fall detection will 

use the dynamic vision sensor chips with resolution 304 x 
256 [9]. The final stereo vision system is still under 
development and will use as well the DSP BF537 for real-
time fall detection. Using the preliminary version of 
system, it was possible to record more of 110 activity 
scenarios with about 68 falls. Figure 4 shows one scenario 
with a person entering a room and falling down afterwards 
after stumbling across something. The person was lying 

Figure 4: Events rendered in an image-like representation from an example of a 
person activity and fall. The events are represented for the pair of DVS detector
(middle and left) and with the stereo color-coded stereo reconstruction (right). 
The example shows the person entering the sensor field of view (top) and falling
afterwards(middle and bottom) 
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for about 3 sec on the floor. The events are rendered in an 
image-like representation and shown for both sensor chips 
as well as including the color coded depth information. 
The depth is provided with respect to the distance between 
the sensor (0: dark red; 5m: dark blue). The algorithm for 
the stereo reconstruction is described in [10]. These events 
with the depth information are using for tracking the 
person position at home and detection fall incidents. 

 

4. Fall Analysis and Evaluation Results 
For the analysis of person motion and detection of 

possible incidents like falls, three steps are performed. 
First the spatiotemporal analysis of the person activity 
including the fall is performed. Further, the adequate 
parameters featuring the fall aspect are extracted. Finally, 
an intuitive method for real-time fall detection is 
developed, implemented in the Blackfin DSP and 
evaluated for the fall detection 

4.1. Fall Analysis 
In order to provide an adequate analysis for the person 

activity before, during and after the fall, we plotted in 
Figure 5 a segment of 10 sec scenario. It shows 
spatiotemporally generated events upon person motion in 
the scene. The bold colored events were generated in the 
last 16 ms while events history within 10 s is shown in 
small grey dots prior to the last 16ms. The dashed cube 
embodies the inactivity period after the fall incident. This 
period shows a drastically reduced number of events 
compared to the previous time. 

4.2. Feature Analysis 
For fall detection two intuitive features seem to be 

relevant: the person position and activity magnitude. The 
person position can be identified using the depth map, to 

find out if the person is lying on the floor. The activity 
magnitude can be determined by calculating the event rate 
per sec using the number of events generated by the 
sensor upon person motion.  

Figure 6 depicts the normalized height of the gravity 
center for the events generated upon person activity in the 
room. These data was generated by the sensor along 11 
sec during the person fall. The red line at 5.5 sec 
illustrates the start of person fall and show the drastic 
decrease of the height. Between 8 and 10.5 sec, the height 
is at the bottom, while the person was on the floor. 
Starting from 13 sec the person is standing and thus the 
height was drastically increasing. 

 
The second parameter consisting of data rate (activity) 

is shown in Figure 7. In this 11 sec data, we can clearly 
notice the person fall after the red line (between 5.5 and 
10 sec) illustrated in the decrease of event rate. Between 
8.5 and 10 sec, the person was completely immobilized 
and therefore not generating any events. Afterwards the 
person is standing up and thus the event rate increases 

Figure 5: Continuously generated events for 10 sec person’s
motion including 3 sec inactivity (dashed cube) after a fall 

Figure 7: Event rate generated by the sensor during the person 
motion. The red line shows the start time for the person fall 

Figure 6: Normalized height of the gravity center of the event 
during the person motion. The red line shows the start time for 
the person fall 
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drastically. 

4.3. Real-time Fall Detection 
The analysis performed in last subsection clearly 

showed that the case of a person fall from standing down 
to the floor can be detected using two features/parameters. 
Using the event-driven stereo vision system, the data rate 
and person height can be useful for the above-describe 
fall. Both features show a drastic decrease till the lowest 
point and therefore the detection might be possible.  

In order to verify this assumption, a evaluation of real-
time fall detection have been performed in real-time and 
implemented in the embedded system of Figure 1. In this 
case we performed height detection and tracking together 
with data rate evaluation. For the height detection, we 
assessed the highest point (head) as seen in Figure 8. The 
images in Figure 8 show the events generated from the 
stereo sensor, rendered in an image-like representation, 
including the depth information (color-coded), detection 
box and head-tracking results. The top left image of 
Figure 8 shows the events generated when the person 
entered the scene. The yellow box encodes that this person 
is newly detected. The box color is switched to red after 
few seconds (images middle/right top and left/middle 
bottom). The colored line shows the results of tracking the 
head and its distance from the sensor. The person fall is 
illustrated in from the middle top image till the left bottom 

image. The color of the tracked line changed from red 
(standing) to blue (falling) as the head get farther than the 
sensor. The middle and right bottom images do not show 
any events due to the person inactivity. For this reason a 
fall alarm is raised, which is illustrated in the right bottom 
image as orange box over the fall position. This case 
shows that the usage of height tracking (head tracking in 
this case) and the event rate can be useful for efficient 
detection of this kind of falls (from standing down to 
floor).  

Figure 9 shows a statistical analysis of the temporal 

Figure 8: Sequence of images (top left to bottom right) showing the results of tracking and detection of person’s fall from standing

Figure 9: Fall statistics with the analysis of the height feature 
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difference of the height from 110 acquisitions of 
sequences with person’s activity at home. This data set 
includes 68 sequences with falls. The dashed square 
encloses the red bars consisting of fall scenarios. We can 
clearly notice that the height information of these falls is 
distributed in a distinguishable form (left corner). 
Therefore we believe that the height information together 
with the event rate is useful for the detection of fall 
incidents from standing position down to floor. 

For other types of falls other features have to be 
investigated in order to consolidate the event rate and the 
height information for robust detection. 

5. Conclusions 
This paper presents a real-time event-driven stereo 

vision system for home monitoring and asynchronous 
detection of person incident like falls towards safety in 
ambient assisted living. Inspired from the biology, this 
stereo vision system allows efficient activity monitoring 
and with depth information such that standard falls (from 
standing) can be detected using data rate and depth 
information. The first analysis on 110 recordings 
including 68 fall cases shows promising results. Future 
investigations include assessment of false alarm rate using 
new recordings of person’s activity at home. Furthermore 
automated detection of falls using e.g learning-based 
methods has to be investigated as well as the extension of 
this system evaluation to other types of falls. Additional 
features have to be investigated to enhance robustness of 
the detection and the reliability of the system 
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Abstract 

 
This paper presents a detailed analysis of a 4D 

representation of events, which are generated by a 
dynamic stereo vision sensor for the recognition of 
person’s fall.  Dynamic vision detectors consist of self-
signaling pixels that autonomously react to scene 
dynamics and asynchronously generate events upon 
relative light intensity change. Their complete on-chip 
redundancy reduction, wide dynamic range and high 
temporal resolution allow efficient and continuous activity 
monitoring in natural environment. Using a stereo pair of 
dynamic vision detectors, it is possible to represent the 
scene dynamics in a 4D space (including time) at a high 
temporal resolution. In this work, we performed 100 
recordings of scenarios including falls in indoor 
environment using this dynamic stereo vision sensor. 
Seven features have been extracted and analyzed for three 
types of falls such that robust parameters will be kept for 
fall recognition. The result of this analysis is shown in this 
work with promising outcomes. 
 

1. Introduction 
One of the highest risks for elderly persons living 

completely alone or spending most of the time alone is 
falling down and being unable to call for help, especially 
in case of loss of consciousness. While critical situations 
can occur principally in all home locations and situations, 
the risk is particularly high in bathrooms, where critical 
conditions increase the possibility of falls, collapses or 
cardiac and circulatory troubles. Several technologies with 
wearing parts are often used for monitoring elderly people 
in nursing homes including RFID tags and accelerometers. 
These technologies are either not popular, inconvenient 

and often disposed in such situations, rendering them of 
little use for detecting potentially hazardous situations. 
Furthermore, tags are usually taken off by persons during 
activities such as taking a bath or fitness and sport where 
the probability for incidents like falls is high. 

Camera-based systems can be stationary mounted to 
perform visual surveillance for the automated detection of 
activities and dynamics in the scene. Besides the privacy 
issue, regular camera systems provide insufficient spatial 
information in locating an object in a room out of a 
sequence of frames. Stereo vision systems have the 
advantage to provide information on the distance between 
object and camera and thus, 3D positions of objects can be 
calculated. However, correct spatial information relies on 
the automatic matching between corresponding pixels in 
each image. This process may be computationally 
expensive, especially if higher temporal resolution is 
required for continuous tracking of scene dynamics; 
moreover, it is not always reliable. For instance, pixels in 
low texture areas are very hard to match. 

In [1], a smart ambient approach for 3D representation 
of activities and scene dynamics for the recognition of 
person’s fall has been proposed. The presented system 
consists of a new 3D visual sensing technology, stationary 
mounted in home environment (living room and 
bathroom) for automatically monitoring and recognition of 
falls. Dynamic vision sensors [5] feature massively 
parallel pre-processing of the visual information in on-
chip analogue circuits and stand out for their excellent 
temporal resolution, wide dynamic range and low power 
consumption. These vision sensors are event-driven and 
have the property to be less sensitive to illumination 
conditions than traditional frame-based sensors as well as 
they protect privacy to a certain extent. Furthermore, these 
sensors involve a drastic reduction of the data volume 
having an on-chip background subtraction, compared to 
image-based sensors and efficiently capture scene 
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dynamics [1][6]. The stereo system described in [1] 
efficiently calculates the depth information of the 
dynamics and allows a low-cost and a low-power 3D 
representation. 

This paper presents a detailed analysis of 4D 
represented data for fall detection, by including the 
temporal information to the spatially represented data. A 
set of features have been extracted from several recorded 
fall scenarios. The stability of every feature over the 
whole data set has been investigated, to select relevant 
features for 4D recognition. A neural-net based learning 
system should have been used for automated and real-time 
recognition of person’s fall, to be implemented in the 
embedded hardware of the stereo system. The paper is 
structured as follows: Section 2 provides a brief review of 
the dynamic stereo vision system presented in [1]. Section 
3 gives a short description on how we were handling the 
continuous event stream. The list and property of all 
selected features for the analysis of the 4D represented 
data is given in section 4.  The temporal analysis of the 
features on three fall types is shown in section 5. In 
section 6, the statistical analysis results of the fall scenario 
features are discussed.  A summary concludes the paper in 
section 7. 

2. Dynamic Stereo Vision Sensor 
The dynamic stereo vision sensor consists of an array of 

304x240 pixels, built in a standard 0.18µm CMOS-
technology. The array elements (pixels) respond to 

relative light intensity changes by instantaneously sending 
their address, i.e. their position in the pixel matrix, 
asynchronously over a shared bus to a receiver using a 
“request-acknowledge” 2-phase handshake. 

Such address-events (AEs) generated by the sensors 
arrive first at the multiplexer unit. Subsequently, they are 
forwarded to an FPGA, which attaches to each AE a 
timestamp at a resolution of 1µs or less. The combined 
data (AEs and timestamps) are used as input stream for 
depth map generation and subsequent processing. 

 
Figure 1 depicts a spatiotemporal data representation of 

one dynamic vision detector, resulting from a two persons 
crossing the sensor field of view in a room-like 
environment. The events are represented in a volume with 
the coordinates x (0:304), y (0:240) and t (last elapsed 
ms), the so-called space-time representation.  

The bold colored dots represents the events generated in 
the recent 16 ms. The blue and red dots represent spike 
activity generated by a sensed light-intensity increase 
(ON-event) and decrease (OFF-event) resulting from the 
person motions, respectively. The small gray dots are the 

Figure2: Still image of a person from a conventional video 
camera (top); the corresponding events of a pair of dynamic 

vision sensors (middle) and resulting event “sparse” depth map 
(bottom) rendered in an image-like representation. 
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Figure1: Spatiotemporal representation of one dynamic vision 
detector capturing scene dynamics of 2 persons crossing the 

field of view. The events data are shown in a room-like 
representation with sensor mounted on the side wall.
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events generated in the elapsed 1.5 seconds prior to the 
recent 16ms. This event history highlights the dynamics 
path in the past 1.5 sec resulting from the moving persons, 
which is an ideal basis for continuous monitoring by 
simultaneous detection and tracking in space and time. 

 
Figure 2 shows the the instant picture of the visual 

scene in figure 1 imaged by a conventional video camera 
(top) and its corresponding AEs using a pair of dynamic 
vision detectors (middle) rendered in an image-like 
representation. The white and black pixels represent spike 
activity generated by a sensed light-intensity increase 
(ON-event) and decrease (OFF-event) resulting from one 
persons motions, respectively. The gray background 
represents regions with no activity in the scene. The non-
moving parts in the scene do not generate any data. The 
processing unit of the dynamic stereo vision sensor 
embeds event-based stereo vision algorithms, including 
the depth generation or the so-called sparse depth map, 
where the algorithm is described in [8] in detail.  The 
resulting sparse color-coded depth map of the scene 
dynamics is provided at the bottom in Figure 2.  

 

3. Analysis of the 4D Representation 
 

For the analysis of the spatiotemporal generated events, 
time blocks have been created at various temporal lengths 
(figure 3) depending on the persons’ movements. The start 
and end of every time block was triggered by the vertical 
direction of Center Of Gravity of events for which we use 
the acronym COGz. If the height of the COGz changes 
significantly, a new time block is annotated. In this way, 
time periods with small or similar changes in the height of 
the person are merged to one time block. The aim of this 
temporal segmentation of the processing is to regulate the 
processing of the asynchronous data and their feature 
extraction with respect to the continuous movements of a 
person. In this way, it was possible to investigate how the 
features behave during a several individual time slots and 
localize the block where a fall may be happened in 
comparison to time blocks without falls.  
Figure 3 depicts procedure of the temporal segmentation 
of the asynchronous sensor events, and shows screen shots 
of sparse (event) depth map with person poses (walking, 
falling, lying).  

Figure3: Illustration of the temporal segmentation of the person’s activity data into blocks using the direction changes of the 
center of gravity (vertical axis). The three figures in the bottom show the instant poses of monitored person 



 

 

Figure 5: Main axis of an upright standing person 

4. Features Analysis 
For the feature extraction, it was necessary to transform 
the recorded data into world coordinates by means of the 
depth information, so that every AE is described as data 
point in the world coordinate system of the room. In this 
way it was possible to represent the person as a 3D point 
cloud and every point is characterized by its X, Y and Z 
coordinate. The Z direction corresponds to the height, 
while the X and Y- axes span the ground plane of world 
coordinate system. Using this representation, we were able 
to extract and analyze seven distinct features. 
  
Feature 1: Mean in Z- direction  
The first intuitive feature was the mean (also called center 
of gravity, COGz) of the events according to the z (person 
height) coordinate, which were computed on an amount of 
data points produced by the person within a specific time 
span (0.04 sec in our case).  
 
Feature 2: Vertical velocity of the COG z 
The second feature extracted was the vertical velocity of 
the mean height (Z coordinate). It was computed in a way 
that it should be negative when the person movements go 
towards the ground plane and will be positive when the 
COGz moves up.  
 
Feature 3: Highest point in Z- direction (Height) 
This feature represents the person highest point. To avoid 
outliers, we computed the height under which 97 % of the 
persons data points lie.  
 
Feature 4: Ratio of the bounding cone to height 
One non-intuitive feature consists of the so-called 
bounding cone. This latter is computed as the variance of 
the person’s data points projected on the ground (XY) 
plane. While the height (highest point) is expected to 
decrease during a fall, the bounding cone is minimal when 
the person is standing upright and expected to rise during 
falls. Figure 4 demonstrates the bounding cone which is 
determined by the projection of the persons’ data points 
onto the ground plane. In the left case, when the person is 
standing upright, the variance or cone in the ground plane 

is smaller than in the right case of a lying person.  
 
Feature 5: Angle of the main axis 
The fifth feature extracted from the data was the person 
declination to the main vertical axis. The main axis of the 
body is computed as the axis with the maximal variance 
with the help of Principal Component Analysis. The angle 
between the ground plane (XY – plane) and the main axis 
is in an upright position expected to be about 90 °, while 
in lying positions it decreases to 0°.  
Feature 6: Vertical volume distribution ratio (VVDR) 
The VVDR feature was taken from the work [12] and it 
describes the distribution of the data points with respect to 
the height. It is computed as the amount of data points, 

which lie below a specific height (e.g. 30 cm), divided by 
the whole amount of data points. If the person is lying on 
the floor, almost all data points generated by the person 
will lie below the threshold and so the VVDR will rise.  
 
Feature 7: Mean activity / Address Event rate  
The last feature used was the mean activity. Due to the 
asynchronous data generation of the sensor, the amount of 
produced AEs depends on the amplitude of the scene 
dynamic and therefore on how much the person is 
moving. The mean activity measures the amount of 
address events produced by the person activities in a 
second.   Due to the decrease of activity with respect to 
the person distance from the sensor, we use the square 
distance to weight the mean activity.  

5. Experimental Results 
An amount of 100 scenarios were recorded in a lab 
environment including 50 simulated falls from walking/ 
sitting and lying to investigate the significance of possible 
features for fall detection. These scenarios were analyzed 
and are discussed in the next subsections. Figure 4: Bounding cone (Ellipsoid in the XY plane) and height 

of an upright standing person (left) and a lying person (right) 
 



 

 

Figure 6: Spatiotemporal 4D representation of scene dynamics 
of a fall from walking (depth is color coded) 

Figure 7: Feature analysis for the fall recognition from walking

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

C
O

G
 Z

 (n
or

m
al

iz
ed

) Center of gravity Z

 

 

COG Z
fall

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1
V

el
oc

ity
 (n

or
m

.)
Velocity of COG Z

 

 

velocity COG Z
fall

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

H
ei

gh
t (

no
rm

.)

Height

 

 

height
fall

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

B
C

/H
 (n

or
m

.)

Ratio Bounding Cone/Height

 

 

BC/Height
fall

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

A
ng

le
 (n

or
m

.)

Angle between main axis of the body and ground plane

 

 

angle main axis
fall

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

V
V

D
R

 (n
or

m
.)

Vertical Volume Distribution Ratio (30cm)

 

 

VVDR
fall

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

time [sec]

A
ct

iv
ity

 (n
or

m
.)

Activity / AE rate

 

 

activity
fall

5.1. 4D Recognition of Falls from Walking 
Figure 6 shows the spatiotemporal 4D representation of a 
person during a fall from walking position. The depth is 
color coded so that with rising distance between the object 
and the sensor the object is marked darker (from green to 
blue). The person walks away from the sensor and falls 
after 9 sec in the same direction of his walking. Therefore 
the color of the data points representing the person 
decreases with time from bright to dark blue.  

 
Figure 7 shows the corresponding features of the fall 

scenario from walking, where the fall instance is 
represented by the red line. We can notice the sudden 
decrease of the mean height (feature 1), of the highest 
point (feature 3) and the angle (feature 5). The velocity 
(feature 2) and the activity rate a sudden decrease/increase 
followed by a swift increase/decrease respectively, which 
represents the person immobilization after the fall. The 
bounding cone/ height ratio and the VVDR show a sudden 
increase, which mean that the person is lying on the floor. 
From this feature, it can be concluded that the recognition 
of the fall for this specific scenario is possible, by using a 
combination of these features. 

5.2. 4D Fall Recognition while Sitting  
In this subsection, we are providing the scenario of a 

person falling while trying to sit down. Figure 8 shows 
data generated by the sensor for scenario where the person 
falls while trying to sit down on a chair. The depth 
information of the data is color-coded (like in figure 6) 
where green means close to the sensor and blue means far 
from the sensor. The person has fallen after 16 sec of 
activity. Figure 9 depicts the graphical representation of 
the features along this scenario. This scenario seems to be 
very similar to the first scenario (fall from walking) where 
the mean height (feature 1), the highest point (feature 3) 
and the angle (feature 5) suddenly decreased at the fall 
instant. The other features also show the same 
characteristic as those of the first scenario. 

5.3. 4D Fall Recognition while Lying  
In this case we deal with spatiotemporal data from a 

difficult scenario where the fall out of a lying position on 
the bed has to be recognized. Figure 10 shows the 
spatiotemporal event representation with the distance 
information to the sensor (color-coded). The legs of the 
person are nearer to the sensor and therefore brighter 
(green) while the body is blue. As figure 11 shows, the 
COG Z of the height before the fall is lower than that in 
figure 7 and 9 because the person is lying on a couch. 
Therefore the height difference of the COG Z during a fall 
from lying is lower than a fall from sitting or walking.  

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 



 

 

Figure 10: Spatiotemporal 4D representation of scene dynamics 
of a fall while lying (depth is color coded) 

Figure 11: Feature analysis for the fall recognition while lying 
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Figure 8: Spatiotemporal 4D representation of scene dynamics 
of a fall while sitting (depth is color coded) 

Figure 9: Feature analysis for the fall recognition while sitting
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The angle of the main axis does not change and is low 
even before the fall because the pose during a fall from 
lying remains the same. The activity before the fall, during 
lying on the couch, is low and therefore the computed 
features are less significant than in the first two cases 
(walking and trying to sit down).  The activity feature 
shows a sudden change due to the instantaneous motion of 
the person during the fall event. 

6. Statistical Analysis of the Recordings 
Within this statistical analysis, we are analyzing the 
feature representation according the time blocks of every 
scenario. As already mentioned, the recorded data of 
every scenario were divided in time blocks of variable 
length, in which we were continuously evaluating the 
features. As a cost function, the decrease of the entropy 
was computed to specify the significance of the features. 
It contains information about how well time blocks 
containing the fall event can be distinguished from other 
(no fall) blocks using the specific feature. In this way a 
classification of all time blocks and the computation of the 
decrease of entropy are done with each of the features. 
The entropy is computed with following formulas [11]  
 

                                  (1) 
 
 

      (2) 
 
 

      (3) 
 
H…      Entropy 
p,n…   number of correct (p), false (n) classified time  
    blocks 
S…    Number of all time blocks 
Ip, In …  Information content of the correct (Ip) and false 
    (In) classified time blocks 

For a visual analysis of the features, a histogram of the 
time blocks was plotted. For each time block the 
difference between the beginning and the end of the time 
block of each feature is computed.  It measures how much 
a feature alters during a time block. A significant feature 
alters during fall time blocks more than during no fall time 
blocks and therefore the difference between the beginning 
and the end of a time block is higher. For instance, during 
time blocks with only walking activity, the angle of the 
main axis should alternate about 80 degrees. In contrast, 
during a fall time block (fall from standing), the persons’ 
pose changes from standing upright to lying and therefore 
the angle decreases from about 80° at the beginning of the 
time block to about 20° at the end of the time block, that is 
the end of the fall. In the case of the vertical velocity of 
the COG Z and the mean activity, measuring the 

difference between the end and beginning of the time 
block does not make sense because they do not describe 
the pose but the dynamic of the persons’ activity. 
Therefore for the vertical velocity of the COG Z the 
minimum and for the mean activity the difference between 
maximum and minimum of the time blocks are computed. 

7. Discussions 
Figure 12 shows the histogram of the time blocks for the 
angle of the main axis. It contains the whole amount of 
assembled time blocks generated by dividing all 100 
records into time blocks. The red bars stand for time 
blocks containing falls, the blue bars are time blocks 
without falls. The different types of time blocks can be 
separated relatively well in comparison with the histogram 
in figure 13 of the vertical velocity of the center of 
gravity.  

To compute the decrease of entropy, thresholds for each 
feature defining the bounds for fall time blocks were 
extracted empirically from the histograms. As an example 
in the above histogram (figure 12) of the angle of the main 
axis, the thresholds could be -20° and -40°. As next step 
time blocks lying within these thresholds are classified as 

Figure 12: Histogram of the angle of the main axis  
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Figure 13: Histogram of the vertical velocity of the COG Z



 

 

fall time blocks, the remaining can be classified as no fall 
blocks. With the help of the resulting classification error, 
the decrease of entropy can be computed according to the 
formulas in section 6.  
The following table presents the cost function (entropy 
decrease) for every feature based on the evaluation 
performed for the whole data set. The features are sorted 
according to the decrease of the entropy during 
classification. According to this evaluation, the most 
significant feature is the angle of the main axis, showing 
an entropy decrease of 0.2935, while the least significant 
features are the mean activity and vertical velocity of the 
COG Z.  

 

7. Conclusions 
Within this investigation, a feature analysis has been 

performed using 4D data from event-driven stereo vision 
sensor. The 4D data represent spatiotemporal scene 
dynamics collected upon person’s activity during in-home 
monitoring, and is intended to be exploited for developing 
a real-time method for robust recognition of person’s fall. 
A total of seven features were extracted from data 
generated by the event-driven dynamic stereo vision 
system, having a data set including 100 scenarios. These 
features were individually analyzed for three types of falls 
(fall from walking, fall while sitting and fall from lying). 
As a general conclusion of this work, we noticed that the 
angle of the main axis of the person and the ratio between 
the bounding cone vs. the height seem to be the most 
significant features for detecting the fall and were always 
sensitive (within the 100 scenarios) at the incident instant. 
Our next step will be to analyze these features for a larger 
data set such 1500 has to be recorded within the period 
July - September 2011. A further next step is to teach a 
decision system, based on the neural network in 
recognizing falls and to evaluate the whole system for 
home monitoring and asynchronous and automated 

detection of person falls. 
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Ranking 
Decrease 
of entropy Feature description 

1     0.2935 Angle of the main axis  (difference)

2 
    0.2219 Ratio bounding cone/ height 

(difference) 

3 
    0.1942 Center of gravity 

(difference) 

4 
    0.1717 Highest point 

(difference) 

5 
    0.1133 Vertical volume distribution ratio 

(difference)  

6 
    0.0608 Vertical velocity of the COG Z 

(minimum) 

7 
    0.0304 Mean activity 

(maximum- minimum) 


