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1. Overview 

This document briefly overviews the feature extraction mechanisms developed in the IS-

ACTIVE project. The results are available as prototypes, used for experimentation and 

evaluation. 

 

2. Feature extraction methods 

The project requirements indicate two distinct usage scenarios for the sensors: during daily 

activities (continuous monitoring) and during physical exercising (temporary monitoring and 

assistance). Starting from these scenarios, the following feature extraction methods have 

been developed as building blocks for the end-user applications. 

Firstly, the estimation of daily activity level is implemented through the IMA value, 

corresponding to the body energy expenditure. This feature classifies under continuous, long-

term monitoring. Secondly, physical exercising is augmented with automatic, sensor-based 

detection of vertical movement for a (dumbbell) lifting exercise. This feature classifies 

therefore under temporary, short-term monitoring and assistance. Finally, automatic object 

recognition is done via correlating features extracted from motion sensors worn by the user 

and attached to objects. This contributes to both monitoring during daily activities (detect 

which objects are handled by which user) and physical exercising (detects which exercising 

objects are chosen – e.g. dumbbells – and when the exercise is begun). 

The methods are further detailed in the following sections. 

2.1. Activity level - the IMA value 

It has been shown that health condition and quality of life are directly influenced by the amount 

and intensity of daily physical activity [1]. This is particularly relevant to persons suffering from 

COPD. They enter a vicious circle, in which being active causes discomfort, making them 

progressively more sedentary, and deteriorating their health. Monitoring the daily activity can 

stimulate people to perform exercises and to be more active in general by providing feedback 

and assistance to better manage the physical condition.  

The activity level of a person is best assessed in terms of energy expenditure. This is 

therefore a relevant feature for the IS-ACTIVE use cases. The IMA algorithm [3] is shown to 

produce a good estimate of the activity level / energy expenditure. The main steps of the 

algorithm are the following: 

1. The accelerometer signal is first high-pass filtered to remove the gravity component of 

the accelerometer signal.  

2. The resulting acceleration signal is then integrated according to  

3. Equation 1 to obtain the IMA value. The integral produces a value that correlates with 

the signal energy over the three axes, which is a good measure for the intensity of the 

measured motion.  

4. The integration time T is set to one minute. To calculate the IMA value for one hour or 

one day, the IMA minute values are averaged over the period involved. 
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Equation 1 – the IMA formula 

 

The IMA algorithm if fully implemented and operational on the ProMove nodes, with options 

for configuring the time intervals to different granularity levels. 

2.2. Exercising - detection of the direction of vertical motion 

Assisted exercising is one of the objectives of the IS-ACTIVE project. Detailed descriptions of 

exercises for COPD patients are provided in D2.1 – Requirements. We aim to stimulate 

patients to exercise more by means of enhanced games, where sensors are embedded in 

objects and the game reacts to the motion of the user and objects. A concrete example is 

dumbbell lifting, where a ProMove sensor node in embedded in the dumbbell and recognizes 

automatically the up-down movements. 

This game scenario poses the challenge of detection of the direction of vertical motion – up or 

down – regardless of the position or orientation of the dumbbell. This is a significant challenge 

compared for example to the now widely used Wii system, where the Wiimote is always held 

and handled in a certain position (by design). 

We researched and implemented therefore an algorithm for up-down feature detection using 

the ProMove on-board accelerometer sensor. The objectives of the algorithms are: 

• To obtain the vertical component of dynamic acceleration, removing the influence of 

gravity, and subsequently detect the upward or downward motion. 

• To be orientation-independent and work even if the sensor orientation changes during 

movement (for example if the user tilts the dumbbell during the exercise). 

To obtain the vertical component of dynamic acceleration, removing the influence of gravity, 

we project the acceleration vector on the estimated gravity vector. This is achieved by 

calculating the dot product between the gravity vector and the sensor acceleration [2], as 

shown in Equation 2. 
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Equation 2 – Vertical projection of acceleration 

 

The resulting projection p is parallel to gravity g. The dot product yields a scalar result and 

thus the fractional part before g in Equation 2 represents a scale value, indicating the 

magnitude of the projection relative to g itself. Since we are mainly interested in the sign of the 

projection relative to g, we can simply use the numerator of the scale value, yielding the 

decision function from Equation 3. 
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Equation 3 – Decision function 

 



Figure 1 shows  idealized  examples  of the projected vertical acceleration and integrated 

vertical velocity resulting from this algorithm. Both upwards and downwards movement are 

shown. As the figure shows, the acceleration is first in the direction of the movement  during  

acceleration  and  subsequently against it. Compared to the idealized example, the real-life 

sensor signals are much more noisy, noise that results directly in errors in the correct “up” or 

“down” classification. That is why we integrate the acceleration into a vertical velocity 

estimate, which also smoothens much of the noise. As shown in the bottom plot of Figure 1, 

this results in a single peak either going up or down.  

 

 

Figure 1 - Ideal example of projected vertical acceleration and integrated vertical velocity of upwards 

and downwards motion 

 

The implementation is shown schematically in Figure 2. The movement of the user is sensed 

by the accelerometer. Using the sensor output, the gravity vector is estimated. The estimated 

gravity vector is used to extract the current sensor acceleration from the acceleration 

measurement and to project that on to the gravity vector as explained. The resulting projection 

is saturated to remove excessive spikes, which are caused by impact, e.g. when the sensor is 

tapped. Also, the projection is clamped to zero if it is below a certain threshold to prevent 

noise from affecting the next step. The next step involves integrating the vertical acceleration 

into a vertical velocity estimate. The aforementioned threshold makes sure the integral is not 

changed by noise when the sensor is still. The final step detects the spikes in the velocity to 

distinguish upwards and downwards motion. The integral is reset to zero when a peak has 

passed. 



 

Figure 2 - Overview of implementation of up-down movement detection 

 

2.3. Extracting features for automatic recognition of object handling 

User interaction with smart objects represents an important component of the ambient 

assisted living vision. As debatable as the definition of a “smart object” may be, it is logical to 

assume that a smart object should, at the very least, detect when the user is interacting with it. 

A more advanced piece of functionality would be to additionally recognize how the user is 

interacting with it and further on, by combining such information from various objects, to infer 

the user’s activities and provide specific support.  

The IS-ACTIVE system accurately detects what objects the user is interacting with by 

equipping the objects of interest and the user’s arm with wireless sensor nodes that measure 

their motion using inertial and magnetic sensors [4]. In order to detect object use, relevant 

features of the collected motion data from the objects and the user’s arm are correlated. The 

feature extraction, communication and correlation is done on-line and cooperatively by the 

sensor nodes, which guarantees a fast response time to the user. 

The feature values are extracted from the raw signal at regular non-overlapping intervals 

called windows. A new feature is computed at the end of such an interval, which means that 

the length of the windows, i.e. the window size W, determines the rate at which features are 

generated with a given sample frequency fs, i.e. the feature frequency (ff = fs/W). 

The extracted features need to meet certain requirements: (1) the extracted features must 

adequately retain the overall motion characteristics, (2) the processing requirements need to 

be as low as possible, as dictated by the resource limits of sensor node hardware, (3) the 

extracted features must be small and produced at a low rate to keep bandwidth and 

processing requirements low, and (4) the features must be computed such that the absolute 

orientation of the sensor has little or no influence on the produced feature result. 

To meet these requirements, we define a feature vector composed of two features that 

describe the intensity of lateral and rotational movements and are orientation independent. 

 

 

 

 



2.3.1. Compass rotation angle 

We infer the intensity of rotation during a given time interval by calculating the angle between 

vectors measured at the beginning and the end of a feature window through the dot product. 

The compass rotation angle fcra feature is calculated from the compass measurements 

)(),(),( tmtmtmm zyx=  in the window interval t = 1…� as follows: 
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Equation 4 - The compass rotation angle 

 

The feature value is normalized to yield a cosine angle value in the interval [−1; 1]. When 

there is no rotation, fcra = 1.  

 

2.3.2. Mean acceleration magnitude 

To make the accelerometer data insensitive to the current orientation of the sensor, two 

important steps are taken within a window interval t = 1…�: 

1. The raw accelerometer signal )(),(),()( ,,, tatatata zryrxrr =  is stripped from its offset 

by subtracting the mean value in the window interval. This coarsely compensates for 

the gravity component, which is orientation-dependent and usually changes slower 

than the actual acceleration the sensor is subjected to. Additionally, this step 

compensates for the effect of offset miscalibration, avoiding the need to calibrate the 

individual accelerometers. 

2. The sum of the absolute vector components is calculated from the three axis 

components. This has a similar response to the more computation intensive 

acceleration magnitude. This discards the vector’s direction and retains only its length, 

resulting in one value per sample that describes the desired intensity. 

Summarizing, this mean acceleration magnitude fmam feature is calculated from the raw 

acceleration samples in the window interval t = 1…� as follows: 
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Equation 5 - The mean acceleration magnitude 

 

For a pair of sensor nodes under consideration, the motion features are correlated in the time 

domain using the Pearson product-moment correlation coefficient. This gives an indication of 

whether the two nodes are moving the same – i.e. the node on the user’s arm and the smart 

object are moving together. A node performs the correlation calculation using its local 

measurements and those communicated wirelessly from the peer node. The correlation is 

calculated over the last H features produced at both nodes. The result lies in the range [−1; 1], 



for which a value of 1 means that the signals are fully correlated and values less or equal to 0 

mean that the signals are not correlated. 

3. Conclusions 

The first prototypes of the feature extraction methods are available to the IS-ACTIVE 

consortium, being implemented on the ProMove platform. The methods cover both usage 

scenarios required by the project: long-term daily activity monitoring and short-term physical 

exercising. 
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