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Abbreviations  
Below is a list of abbreviations used in this document.  
 
ADTree Alternating Decision tree classifier 
BFTree Best First decision tree classifer 
BMI  Body-Mass Index 
CFS  Chronic Fatigue Syndrome 
CLBP  Chronic Low Back Pain 
COPD  Chronic Obstructive Pulmonary Disease 
D   Deliverable  
FB  Feedback 
GA  Genetic Algorithm 
IMA  time Integral of the Modulus of Accelerometer ouput 
INE   Inertia Technology  
J48  Pruned C4.5 decision tree classifier 
J48graft Grafted, pruned C4.5 decision tree classifier 
JRip  Java implementation of Repeated Incremental Pruning to Produce Error  
  Reduction (RIPPER) classifier 
LOO  Leave-One-Out 
NBTree Decision tree with Naive Bayes classifiers at the leaves 
PART  PART decision list, partial C4.5 decision tree classifer 
PDA  Personal Digital Assistant 
REPTree Reduced Error Pruning tree classifier 
Ridor  RIpple-DOwn Rule learner classifier 
RRD   Roessingh Research and Development 
WEKA  Java based machine learning toolkit 
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1. Introduction 

The objective of IS-ACTIVE is to devise a person-centric healthcare solution for elderly with 

chronic conditions – especially people with COPD – based on the recent advances in wireless 

inertial sensing systems. The project emphasizes the role of the home as care environment, 

by providing real-time support to patients in order to monitor, self-manage and improve their 

physical condition according to their specific situation. 

IS-ACTIVE focuses on simple and ubiquitous feedback interfaces, such as PDA, Tablet, TV 

and the inertial sensors themselves. Part of the research done in the IS-ACTIVE project is 

focussed on automated learning and adaptation techniques. The implementation of self-

learning, adaptive algorithms can be found both in the sensor and in the PDA feedback 

device. 

The research and development done in the area of learning and adaptation techniques is 

described in this deliverable (D4.3). The document focuses on two specific areas in which 

these techniques are applied: the assessment of physical activity levels using duty-cycled 

accelerometer data and the self-learning, adaptive generation of feedback messages for 

motivation of physical activity. 

Section 2 describes an improvement of the IMA accelerometer-based method for estimating 

the level of physical activity of a person by adapting the duty-cycle to meet the accuracy 

requirements while reducing the energy consumption. 

Section 3 explains the methods and algorithms used within the IS-ACTIVE PDA feedback 

application that automatically determine the right timing for presenting feedback messages to 

the user. 
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2. The Assessment of Physical Activity Level Using Duty-

Cycled Accelerometer Data 

 

This section describes an energy efficiency improvement of the IMA accelerometer-based 

method for estimating the level of physical activity of a person [Bosch et al., 2011].  The 

sensor sampling and data processing requirements are significantly reduced by duty-cycling 

sensor sampling and adapting the duty-cycle to meet the resource constraints of the sensor 

nodes and thus making the implementation and long-lasting operation possible on these 

resource-constrained devices. By duty-cycling, the system maintains adequate bandwidth, 

while still reducing the effective number of samples taken per unit of time. We analyze in detail 

the impact of duty-cycling on the accuracy of the method and show that we can reduce the 

duty-cycle to as little as 10%, incurring a mean error of only about 4%. This translates into 

energy saving of up to 60% on the sensor node. 

 

2.1. Energy-efficient IMA 

We aim to provide an efficiency improvement on the IMA accelerometer-based energy 

expenditure estimation method by Bouten et al. [Bouten et al., 1997], as described by the IMA 

formula of Equation 1 (see also D4.1). We focus on reducing the sampling frequency fs, 

thereby lowering the system’s processing requirements and energy consumption. 
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Equation 1 – the IMA formula 

 

However, a certain minimum sampling frequency is necessary to obtain a reliable result. This 

means that at some point, reducing the sample frequency further would impair the reliability 

and accuracy of the IMA output too much. This is mostly due to the fact that a certain 

minimum bandwidth is required to capture the most significant spectral components of the 

movement signal, which according to Bouten et al. are located roughly between 1 Hz and 20 

Hz. 

However, we could still improve efficiency in the time domain: it is probably not strictly 

necessary to keep sampling continuously. If we duty cycle the accelerometer sampling, we 

could achieve a higher level of efficiency, while maintaining sufficient bandwidth. Assuming 

that the level of physical activity does not change much in the inactive periods of the duty 

cycle, i.e. when the system is not sampling, the impact on performance would be minimal. 

Also, during the inactive periods, the system could enter a sleep mode to conserve energy. 

For this optimization, the IMA algorithm itself is not altered in any way and its band-pass filter 

is not reset at any point in time. 

The defining parameters of a duty cycling scheme are the duty cycle D, i.e. what fraction of 

time the system is active, and the duty cycle period (TD) or frequency ( fD  = 1/TD), which 

dictates how often the system switches between activity and inactivity per unit of time. Figure 

1 schematically shows the proposed duty cycled sampling procedure for one activity value 

period T. Two alternatives are displayed. The top plot shows a duty cycle period that matches 

the period T, meaning that all samples are collected at the beginning of that period. The duty 

cycle is set to 20 %. The bottom plot shows a similar scheme, but the period T is devided in 
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multiple duty cycle periods (three in this case). The bottom alternative has the advantage that 

the samples are spread more evenly over the period T, which makes the chance of missing 

short but important significant activity smaller. The IMA output is probably going to be less 

reliable when the duty cycle period is very long, simply because the chance that the activity 

level changes significantly in the inactive period is higher. However, choosing a very short 

duty cycle period is also not beneficial, since the act of switching to and from sleep mode will 

claim system resources as well. The length of the duty cycle period is therefore an important 

design choice. 

 

Figure 1 – Overview of duty cycle sampling scheme 

 

 

Note that when fD is very high relative to the sampling frequency at moderate duty cycle, the 

net effect will be very similar to just reducing the sampling frequency. As an extreme example, 

when fD  is equal to half the sample frequency and the duty cycle is 50 %, every other sample 

is dropped, which means that the effective sample frequency is equal to half the sample 

frequency. Even when fD is set to a more useful value, we can still calculate the effective 

sample frequency fs,eff , which is equal to the actual amount of samples collected per second 

(fs,eff  = Dfs). We use this as a measure for the amount of effort involved in the IMA calculation. 

Obviously, when the duty cycle D is 100 %, fs equals fs,eff .  

Summarizing, the following parameters are important for our implementation of the IMA 

algorithm: 

� Activity value period (T): the interval between successive IMA activity values. 

� Sample frequency (fs): the sampling rate of the accelerometer at the active periods of 

the duty cycle. This is what the hardware is configured to and the true rate at which 

samples enter the system when active. 

� Duty cycle (D): The fraction of time the system is sampling. The effective sample 

frequency, which indicates how many samples are actually collected per unit of time, 

depends on this parameter and is equal to fs,eff  = Dfs. 

� Duty cycle frequency (fD): The frequency at which the system switches between 

active and inactive within the duty cycle scheme. The activity value period (T) should be 

an integer multiple of the duty cycle period (TD = 1/ fD). 

The effect that these parameters have on the system’s performance and effciency are 

evaluated in the next section. Note that when the bare output from integral formula of Equation 

1 is used, its magnitude does not depend only on the level of activity.  Parameters like the 

sample frequency fs, the activity value period T and the duty cycle D also have a significant 
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influence on the resulting value. Therefore, we always normalize the activity values before any 

comparison is made, scaling it such that the theoretical (and practically unattainable) 

maximum IMA activity level will just fit into a 16 bit unsigned integer (= 216 − 1). 

 

2.2. Experiments and results 

 

To assess the impact of our efficiency improvement on the accuracy and reliability of the IMA 

activity value, we perform a series of experiments.  We compare the output of the original 

unoptimized system at the highest sample frequency with the output of the system at various 

different optimized configurations. To be able to simulate different algorithm configurations 

using exactly the same conditions, we need to collect raw accelerometer data.  This means 

that the actual experiments need to be performed just once and that the algorithm itself is 

executed offine in the simulation.  Because the output is only compared between different 

algorithm configurations, and not between different activities or users, the absolute values of 

thesystem output are of little importance. This means that we can suffice with only one user, 

provided that a sufficiently broad set of activities is performed. 
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Figure 2 - IMA calculated from accelerometer data at various configurations 

 

For this experiment, we use the ProMove inertial sensor node platform [ProMove].  We collect 

raw three dimensional accelerometer data at 200 Hz from one person performing daily 

activities.  The sensor range is configured at ±6g. We collect approximately one hour of data 

involving activities like cycling, walking, standing and sitting. The sensor node is mounted at 

the user’s waist on his belt. The data is logged to the node’s on-board flash memory and 

downloaded wirelessly at the end of the experiment. The accelerometer data from the 

experiment is shown in the top plot of Figure 2.  The data is logged from a bicycle errand to 

the local city. The first 2.5 minutes involve sitting at a desk, walking down some stairs and out 

of the building. After that time, a short cycling trip is started, which ends at the person’s home. 
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At round the 6 minute mark, the trip ends and the person’s activities involve walking around 

his home and standing still to talk to people. At minute 10, the actual bicycle trip to the city is 

started, which ends at the minute 27. At minute 24, the person needs to stop at a traffic light. 

Starting at minute 27, the person walks a significant distance which ends at the 31 minute 

mark at the counter of a shop. Up until minute 46, the person waits, which mostly involved 

standing and short walking activity. After that time the person walks back to his bike. Close to 

the 50 minute mark, the person reaches his bike and cycles back to the office. This trip 

involved a long stop at a traffic light starting at minute 52 and the person arrives at the office 

building at the 62 minute mark. The log ends with the person walking back into the building 

and taking a seat behind his desk. 

The middle plot of Figure 2 shows the resulting IMA activity values for three different simulated 

sample frequencies.  The IMA values are produced at an activity value interval (T) of 10 s and 

normalized as explained in Section 3.  The sample frequency is reduced from 200 Hz to lower 

frequencies by down-sampling the raw accelerometer data; this also involves low-pass filtering 

to prevent aliasing effects. At the full 200 Hz, the IMA values are the most accurate.  When the 

sample frequency is reduced to 100 Hz or even 50 Hz, the IMA values do not differ very much 

from the 200 Hz case (not shown in the plot). When the sample frequency is reduced further 

to 10 Hz, the difference first becomes significant, especially for the more intense activities, 

such as walking. Notice that the produced IMA value is consistently lower than the equivalent 

at 200 Hz, which is to be expected since some spectral components that contribute to the 

signal energy are lost at lower sample frequencies. However, even though the IMA values 

differ significantly from the 200 Hz case, the overall trend is mostly maintained, which means 

that the activity intensities retain similar relative magnitudes.  Finally, for a sample frequency 

of 2 Hz, this trend is lost for the most part. This is evident from the fact that walking (e.g.  at 

minute 30) and riding a bicycle (e.g.  at minute 25) become indistinguishable in terms of 

activity level. Apparently, some important frequency components for distinguishing physical 

activity levels are located above 1 Hz. 
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Figure 3 - Frequency and duty cycle performance statistics 

 

Figure 3-left shows error statistics for a whole range of sample frequencies.  The plot shows 

the mean error, expressed as the difference with the ‘ideal’ IMA output at 200 Hz.  The error 

magnitude is shown as a fraction of the maximum IMA value encountered in the 200 Hz 

simulation.  We notice that the error is relatively small when the sample frequency is above 40 

Hz and becomes very significant when it drops below 10 Hz. 

In the next simulations, we explore what happens when the duty cycle is varied. We fix the 

simulated sample frequency at an appropriate level of 50 Hz. The activity values are again 

produced with an interval T of 10 s, which is now also the duty cycle period (TD). The 

normalization of the IMA value also accounts for the effect of the duty cycle.  The bottom plot 

of Figure 2 shows the resulting IMA activity values for three different simulated duty cycles. As 

the plot indicates, the main effect of duty cycling is that the IMA output is less stable. This is to 
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be expected, since the system is sampling only at a fraction of the time, and at those 

instances the amount of motion may be significantly higher or lower than the motion that is 

skipped and thus not included in the result.  The largest deviations happen at those instances 

where a brief dip or peak in the activity level happens just in the sample period of the sensor. 

Obviously, this effect is reduced when the duty cycle is higher and less samples are skipped. 

This effect is visible in Figure 2 for example at minute 40. An important difference with the 

reduction of the sampling frequency, as explored in the earlier simulations, is that the overall 

magnitude of the IMA output does not change, indicating that the system retains sufficient 

bandwidth. Figure 3(b) shows error statistics for a whole range of duty cycles 0.01 % and 100 

%. As shown, between 10 % and 100 %, the impact of duty cycle on performance seems 

close to linear. However, when the duty cycle drops below 10 %, the difference grows much 

faster. 

For the results in Figure 3 - right, the duty cycle period TD was set equal to the activity value 

period T of 10 s. As explained in the previous section, this may not be optimal since 10 s is a 

long time. Therefore, we investigate what value for TD would be optimal.  To extend the range 

of possible values a little, we increase T to one minute. We investigate duty cycle periods TD 

that are integer divisors of T. The results are shown in Figure 4. The sample frequency fs is 

still set to 50 Hz. The horizontal axis of the plot shows the effective sample frequency, which 

directly maps to the chosen duty cycle (fs,eff  = Dfs), as explained in the previous section. 

Clearly, reducing TD is beneficial, as the error drops consistently for almost the whole 

spectrum of effective sample frequencies. However, reducing TD below 2 s shows no more 

clear improvement (not shown in the plot), which suggests that this is the optimum value in 

this case. 
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Figure 4 - Duty cycle performance statistics at varying duty cycle periods 

 

It is now interesting to check how the reduction of the duty cycle - and thereby the reduction of 

the effective sample frequency - compares to the reduction of the real sample frequency 

shown in Figure 3-left. Figure 4 also includes a plot for the performance of varying the sample 

frequency directly, while keeping the duty cycle at 100 %. The comparative performance 

impact of reducing only the duty cycle versus reducing only the real sample frequency is 

clearly visible in the plot.  Particularly to attain a low effective sample frequency (well below 25 

Hz) to minimize processing effort, the use of duty cycling can be beneficial. 
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For example, we could aim to achieve an effective sample frequency of 5 Hz. We can do this 

by setting a duty cycle of 10 % at a real sample frequency of 50 Hz, which incurs an error of 

only about 3-5 % at a duty cycle period below 15 s. In contrast, reducing the sample frequency 

directly to 5 Hz incurs an error of more than 10 %, which is up to three times worse. 

Conversely, approximately the same 3 % error is incurred at a real sample frequency of 15 

Hz, which means that, at that same level of error, the amount of samples that needs to be 

taken and processed can be decreased by about three times (i.e. 66 % less) using a proper 

duty cycling scheme. Also, at a duty cycle of 10 % the system can enter sleep mode up to 90 

% of the time and, at a moderate duty cycle period of a few seconds, it can sleep for long 

consecutive periods, avoiding the burden of frequent sleep-wakeup cycles.  This amounts to a 

very significant efficiency improvement, yielding estimated energy savings of around 60 % 

(including some additional overhead) when compared to reducing the sample frequency 

directly. 

 

2.3. Conclusion 

In this chapter we investigated improving the IMA algorithm in terms of its efficiency.  We 

achieve this by effectively reducing the amount of accelerometer samples taken per unit of 

time. This is done by duty-cycling the sensor sampling instead of reducing the (hardware) 

sampling frequency directly. This preserves the system’s bandwidth, while still reducing the 

sampling and processing needs.  We perform simulations with the IMA algorithm for various 

possible configurations using data collected from a real-life experiment. The simulations show 

that a reduction in the energy consumption of up to 60 % is feasible using the duty-cycling 

method, with only a minor (up to 5 %) difference from the results produced at very high 

sample frequencies with no duty cycling. This work has been published in [Bosch et al., 2011]. 
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3. Self-Learning, Adaptive Feedback on Physical Activity 

In the IS-ACTIVE project, one of the goals is to help our patients achieve and maintain a 

healthy lifestyle. Patients with Chronic Obstructive Pulmonary Disease (COPD) need to 

remain physically active to prevent physical deconditioning. Increasing physical participation in 

everyday activities is therefore among the key goals of rehabilitation treatment in patients with 

COPD. Research on the daily activities of COPD patients has already shown that they are 

significantly less active overall than healthy controls (863±244 counts per minute, versus 

1189±320 counts per minute) [Tabak et al., 2011]. 

2.2. Introduction 

In IS-ACTIVE, we use a 3D-accelerometer (ProMove-3D) to assess the patient’s daily activity 

pattern in IMA values, combined with a PDA for providing feedback. By comparing his activity 

to some predetermined reference activity pattern the patient is provided with feedback 

messages at regular intervals advising them to be more or less active. 

A similar, earlier version of this system has been successfully used in studies to balance the 

daily activity patterns of chronic low back pain (CLBP) patients [van Weering et al., 2009], 

chronic fatigue syndrome (CFS) patients [van Weering et al., 2007], [Evering et al., 2011] and 

people suffering from obesity (BMI > 30). In the case of CLBP and CFS patient populations, 

the goal of the feedback is to spread activity over the day, while for obesity patients, the goal 

is to  encourage them to increase activity over all. 

The data collected during the aforementioned studies has shown that the approach is 

successful in general. The ability of the patient to see his/her activity in a graph (see Figure 5) 

gives insight into the patient's own level and spread of daily activities; and the addition of 

regular feedback messages to remind the patient of his/her status increases the patient's 

ability to balance or improve his own activity pattern further. 

 

Figure 5: the PDA activity monitoring and feedback application, running on an HTC Desire (Android 

2.2), showing the activity graph of the patient (blue), plotted over the desired reference activity graph 

(green). The status panel shows the current deviation from the reference line in percentage points. 
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Although providing feedback messages to the patient has proven to be efficient, compliance to 

the individual feedback messages remains relatively low. Table 1 shows some statistics about 

data collected from 5 individual data sets of collected activity and feedback data. 

 

 CLBP CFS Obesity CFS2 COPD Total 

Subjects 17 38 40 26 17 138 

Days 322 675 308 331 262 1898 

FB subjects 17 11 17 26 15 86 

FB days 212 267 109 323 165 1076 

FB given 1771 1300 1006 1440 1394 6911 

FB usable 526 455 531 502 360 2374 

Compliance 61.98% 64.84% 47.27% 64.34% 58.06% 59.14% 

Table 1: Data statistics from 5 corpora of activity and feedback data: CLBP (Chronic Low Back Pain), 

CFS (Chronic Fatigue Syndrome), Obesity, CFS2 (Chronic Fatigue Syndrome, Prognostic Cohort), 

COPD (Chronic Obstructive Pulmonary Disease).The FB subjects row indicates the number of 

subjects that received feedback, FB days is the number of days on which feedback was received, FB 

given the total number of feedback messages given, and FB usable the total number of feedback 

messages for which compliance could be calculated. 

 

The table shows that compliance to feedback messages is on average only 59%, meaning 
that almost half of the messages given to patients are ignored. The compliance measure we 
use compares the amount of activity performed in the 30 minute interval before the feedback 
event (∆1), with the amount of activity performed in the 30 minute interval after the feedback 
event (∆2). By comparing these values we can see if a subject was more active after an 
encouraging feedback message (Encouraging) or less after a discouraging message (Fdiscouraging). 
We refer to messages that suggest increasing activity as encouraging, and those that suggest 
decreasing activity as discouraging. An example of an encouraging messages is “you should 
go for a walk” and an example of a discouraging message is “read the newspaper”. If no more 
than three data points (3 minutes of measurement) are missing in ∆1 and ∆2, we can reliably 
determine the compliance and differentiate between the following cases: 
 

1. Message Type ‘Fencouraging’ and ∆1 < ∆2. 
2. Message Type ‘Fencouraging’ and ∆1 >= ∆2. 
3. Message Type ‘Fdiscouraging’ and ∆1 <= ∆2. 
4. Message Type ‘Fdiscouraging’ and ∆1 > ∆2. 

 
In cases (1) and (4), we determine that the subject complied with the message, while in cases 
(2) and (3) we say that the subject did not comply with the message. 

The old version of the activity monitoring and feedback system gives feedback on fixed time 

intervals (e.g. very hour), which, intuitively does not seem optimal. Therefore we aimed to 

create a feedback module that automatically determines an optimal timing of feedback 

messages. We want to find out why patients sometimes comply with feedback and sometimes 

not. To do this we try to predict the compliance of a feedback messages by looking at its 

context. After calculating the compliance for every feedback message in our datasets, the next 

step is to define this context in terms of features (see Section 2.2). After enriching our 

datasets with features, we use a statistical machine learning approach to find the relationships 

between context features and the compliance to the feedback message in Section 2.3. The 

work described here is adapted from [Akker et al., 2010]. 
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2.3. Contextual Features 
The context of each feedback message instance is captured in a set of features related to that 
specific feedback message instance. These features primarily should contain information that 
might be relevant for the patient’s (unconscious) decision to either ignore or follow the given 
advice. Also, these features should be available to the system quickly and automatically. 
There are many conceivable reasons for a patient not to follow the advice that was given. For 
example “I don’t feel like walking now”, “I am tired” or “I am in too much pain right now” are all 
perfectly valid reasons, but they are difficult (if not impossible) to measure automatically. Not 
only would these factors be difficult to measure automatically, in this case they were not 
recorded in the corpora used here. That limits us to the data that was gathered during the 
feedback experiments and data that can be added retrospectively. The features that we 
defined fall roughly into five categories: (2.2.1) time related, (2.2.2) message related, (2.2.3) 
weather related, (2.2.4) history related and (2.2.5) activity related. We shall discuss these in 
detail now. 
 

2.3.1. Time related features 

The time related features that are calculated for each feedback message instance concern the 
time at which the message was generated. 
 

• dayOfWeek: which day of the week it is. 

• weekDay: whether this is a weekday or not. 

• dayPart: whether the message was given in the morning (<12:00), afternoon (12:00-
18:00) or evening (>18:00). 

• hourOfDay: the hour of the day on which the message was given (rounded off). 
 
The rationale behind these features is that people have both a weekly and a daily rhythm. This 
means that on some days (e.g. Sundays) people might want to relax and hence may be less 
motivated to be active. In case of daily rhythm, people might be bound to a sedentary job 
during certain fixed hours of 
the day. Adding these features can, given sufficient data, help to detect individual’s patterns 
and enable adaptive behaviour of the system concerting timing of feedback. 
 

2.3.2. Message related features 

The following message related features contain information about the message itself. 
 

• feedbackType: whether this is an encouraging or discouraging message. 

• feedbackMessage: the exact textual content of the feedback message. 

• messageGoOutside: whether the feedback message advises the patient to go 
outside. 

• messageIsAQuestion: whether the feedback message was phrased as a question. 

• messageSuggestIdle: whether the feedback message suggests that the patient sits 
idle for a while. 

 
The first two of these message related features are self-explanatory, but the last three might 
require some background. The reason for including the [messageGoOutside] feature is that if 
the system advises a patient to go out for a walk when the weather is bad, the patient might 
be inclined to ignore the message. This feature is thus related to the weather features (Section 
2.2.3). Whether or not a message is phrased as a question (messageIsAQuestion) might 
influence the patient’s willingness to react. Some people might prefer a system that is more 
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strict and issues its feedback as “commands”, while others might be more stubborn and dislike 
a commanding tone, thus preferring a more suggestive style of message. In the case of the 
messageSuggestIdle feature, some patients might prefer a more detailed suggestion (e.g. 
read the newspaper), while others might react more favourably to a message such as “take it 
easy”. 
 

2.3.3. Weather related features 

The following features contain information about the weather on the day the feedback 
message was generated. They are taken from the Royal Netherlands Meteorological Institute1 
and were added to the corpora retrospectively. 
 

• meanTemperature 

• minimumTemperature 

• maximumTemperature 

• cloudScale 

• precipitationSum 

• precipitationDuration 
 
The reason for using weather data as features is that the weather conditions might influence 
the patient’s willingness to respond, especially when the message tells them to go outside. 
 

2.3.4. History related features 

The following features are related to the history of usage of the feedback system. 
 

• dayOfUsage: a count of how many days the subject has been receiving feedback from 
the system. 

• totalMSGSToday: the total number of messages received so far this day. 

• encouragingMSGSToday: the total number of encouraging messages received so far 
today. 

• discouragingMSGSToday: the total number of discouraging messages received so 
far today. 

• neutralMSGSToday: the total number of neutral messages received so far today. 

• averageCompliance: the average numerical compliance of all previous feedback 
messages this day. 

• sameMessageTodayCount: the number of times the exact same message (as this 
message) was received today. 

• sameMessageOverallCount: the number of times the exact same message was 
received in the total history. 

• sameTypeMessageTodayCount: the number of times the same type of message 
(Fencouraging or Fdiscouraging) was received today. 

• sameTypeMessageOverallCount: the number of times the same type of message 
was received in the total history of usage. 

 
These 10 features are designed to capture the state of previous interactions with the system. 
For example, receiving the same message several times on the same day might cause a 
habituation effect or even irritation leading to non-compliance. The same kind of reasoning lies 
behind the rest of the history related features. 
 

                                                 
1 http://www.knmi.nl/klimatologie/daggegevens/index.cgi 
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2.3.5. Activity related features 

The last two features are calculated from the measured activity level of the subject. 

• distanceFromReference: the distance from the reference line at the time of the 
feedback message instance. 

• approachingReference: whether or not the patient is approaching the reference line, 
calculated as the difference between the time of the feedback message instance T and 
T - 30 minutes. 

 
A patient whose current activity level is much lower than his reference line 
(distanceFromReference) is possibly harder to motivate than someone who is closer to his 
optimal activity level. 
 

2.4. Experiments 
The goal of the machine learning experiments is twofold: to determine a suitable classification 
algorithm and to find the set of features that result in the best performance. Performance in 
this case is measured by accuracy of the classifier, defined as the number of correctly 
classified instances divided by the total number of instances in the dataset. Because the goal 
is to have a patient specific classification method, we choose to perform the experiments on 
the datasets of individual patients. Some patients in our datasets were given so few feedback 
messages that there was not enough data to perform the machine learning experiments on 
them, so they were excluded, leaving a total of 38 patients: 12 CLBP, 11 CFS and 15 Obese 
patients. 
 

2.4.1. Baseline 

In order to judge the accuracy of a certain machine learner outcome, a baseline is required. 
This was calculated for every patient by using a ZeroR, or most occurring class, classifier. The 
ZeroR classification scheme calculates the relative occurrence of classes in the training set, 
then, in the test phase it assigns to each unseen instance the most occurring class. In our two-
class classification problem, if e.g. 60% of the instances are in the ‘yes’ class and 40% in the 
‘no’ class, the ZeroR classifier will assign to each instance the ‘yes’ class and will achieve 

60% accuracy. The average baseline performance over the 38 patients was 60.74% (σ = 

7.01). 
 

2.4.2. Genetic Algorithm 

For all further experiments we use a genetic algorithm (GA) to search for good combinations 
of features.  
 
“Genetic algorithms are search algorithms based on the mechanics of natural selection and 
natural genetics. They combine survival of the fittest among string structures with a structured 
yet randomized information exchange to form a search algorithm [...]. In every generation, a 
new set of artificial creatures (strings) is generated using bits and pieces of the fittest of the 
old [...]”[Goldberg, 1989]. 
 
In our case, we use chromosomes (or binary strings) that represent subsets of the complete 
set of features: each position in the string maps to a specific feature. If the string contains a ‘1’ 
at a certain position, the feature to which that position is mapped is selected for the feature 
set, otherwise it is not. The fitness of chromosomes is calculated by filtering out all the 
features that are mapped to a ‘0’ in the bit string, and performing Leave-One-Out (LOO) 
classification with the remaining set using a certain machine learning scheme. The population 
size (numbers of chromosomes in each generation) is set to 100. In the selection step we use 
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tournament selection (see e.g. [Miller and Goldberg, 1995]) with a tournament size of 2. In the 
case that the two chromosomes selected in the tournament have the exact same fitness, the 
chromosomes with the lowest number of 1‘s is selected for reproduction. This favouring of 
smaller feature sets has been shown not to negatively influence the results of the search 
procedure, and it makes practical sense to do so since it results in classifiers that are faster to 
train and faster to test. The crossover- and mutation rates were fixed to 0.8 and 0.001 
respectively. These values are close to the ones often cited in literature and have been 
experimentally determined to provide decent convergence rates. To reduce the probability of 
finding local optima from a GA run, all experiments were repeated 200 times, storing the 
global optimal results along the way. With these settings, in the feature selection experiments 

(see Section 2.3.4) on average 5036 feature sets were tested (σ = 270) per patient, which is 

0.0038% of the total search space in an average time of 85 minutes (σ = 100) per patient. 

 

2.4.3. Classifier Selection 

The first part of the experiments deal with the selection of a suitable classification method. We 
applied a set of 35 different machine learning schemes from the WEKA Machine Learning 
toolkit [Witten and Frank, 2000]. In the first step we selected the patient with the highest 
instances count and ran the genetic machine learner for all classifiers. This resulted in an 
initial selection of the 10 best scoring classifiers: Ridor, part, ADTree, JRip, J48graft, J48, 
REPTree, NBTree, RandomForest and BFTree. In the next step we repeated the experiments 
with a larger number of patients. Because of the time constraint associated with running the 
genetic machine learning algorithm for all patients, we chose a set of 12 patients: 6 with 

relatively high instance counts (υ = 74, σ = 19) and 6 with relatively low instance counts (υ = 

26, σ = 5). To determine the overall best performing classifier from the set of 10, we chose to 

implement a voting system, whereby for each run, the best performing classifier receives 3 
points, the second-best receives 2 points and the third-best 1 point. Overall the Ridor classifier 
received the highest number of points: 27 out of a possible 36 (runner-ups had 22 points or 
less) and thus was selected as the most suitable classifier. The Ridor, or RIpple-DOwn Rule 
learner, is a simple rule learning scheme whereby first a most general rule is derived from the 
data and subsequently exception rules are generated in a cascading manner [Gaines and 
Compton, 1995]. 
 

2.4.4. Feature Selection 

For the feature selection experiments we used the Ridor classification scheme with the aim of 
determining for all patients how the different features influence the classification of compliance 
performance. The genetic algorithm settings that were used are described above in Section 
2.3.2 and will not be repeated here. Table 2 shows the average baseline, performance and 
relative improvement over the baseline per corpus as well as the overall average values. 
Numbers in brackets indicate the standard deviations. These results represent the best 
recorded scores during the genetic search over the feature space. 
 

Corpus Baseline Score Improvement 

CLBP 61.94 (5.91) 86.16 (3.49) +63.64% 

CFS 63.70 (9.05) 87.24 (3.55) +64.85% 

Obesity 57.59 (5.00) 85.05 (4.83) +64.75% 

Total 60.74 (7.01) 86.03 (4.09) +64.42% 

Table 2: Classification results per corpus. The improvement is calculated by placing the score on a 

scale from baseline to 100; the theoretical performance limit. 

 
All scores are significant improvements over the baseline with p-values less than 0.0001, 
computed using a paired t-test over individual patient results. For each patient, we look at the 
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feature sets that achieved the highest score using the least number of features. Figure 6 
shows the list of features ranked by number of occurrences in the top-scoring, minimal feature 
set solutions. If e.g. for one patient there were 3 unique solutions and a feature was selected 
in 2 out of the 3 solutions, that feature’s weight is increased by 2/3. 
 

 

Figure 6: Features weighted by their occurrence in the best-scoring, minimal feature sets. 

 

On average each feature was selected 6.28 times (σ = 2:73). This is observable from Figure 6 

where only the feature ‘approachingReference’ really stands out. This means that for each 
patient, the Ridor classifiers that were trained and showed to have the highest performance 
each rely on very variable feature sets. This diversity in feature selection among the different 
subjects is most likely caused by the small datasets used for training the classifiers. Figure 7 
shows the average improvement over baseline over all subjects plotted against the number of 

instances used for training. When ignoring the data point for 10 instances (υ = 32:5, σ = 37:1), 

a trend of rising improvement over baseline can not be seen. Usually when plotting instances 
versus performance a rise in performance is expected when using more training data, which is 
not the case here. This could mean that either all results are random (which they have proven 
not to be) or overall performance will only start increasing with much more data (more likely). 
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Figure 7: Average improvement over baseline for all subjects when using increasing numbers of 

instances for training. In red is the linear trend line: -0.25 x + 66.08. 

 

2.5. Implementation 

The work described in Section 2.2 and 2.3 has been implemented into the PDA application 

developed for IS-ACTIVE to do real-time prediction of optimal timing for feedback messages 

[Akker et al., 2011]. 

 

Figure 8 shows an overall architecture of the PDA software framework in the old configuration 

without the self-learning, adaptive feedback agent. The architecture is set up in a modular 

fashion, whereby each module handles a specific part of the application. The BluetoothModule 

handles communication with the ProMove-3D sensor, by reading and writing the data streams. 

These data streams are send to the ProMove3DReader which reads out the IMA values from 

the sensor and sends them through to the IMADataModule. The GUIModule, besides handling 

the Graphical User Interface, receives periodic requests for feedback from the 

UserInputModule. The GUIModule then passes the request on to the BasicFeedbackModule, 

which returns a random feedback message based on the patient's current deviation from the 

reference line (e.g. "Please go for a walk", if the patient is too far below its reference value). 
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Figure 8: Overall architecture of the PDA activity monitoring and feedback application, running on 

Android. This figure shows the modular set up and the specific modules used in the original application 

for providing feedback at regular time intervals. 

 

Figure 9, below, shows a detailed view of the modules involved in the implementation of the 

new FeedbackAgent, that automatically determines optimal timing for feedback messages. 

The FeedbackAgent has access to the IMA values from the ProMove-3D sensor  via a direct 

stream from the IMADataModule. As the BasicFeedbackModule, it receives the feedback 

requests from the GUIModule (via the UserInputModule). These are now sent "constantly" (i.e. 

once every minute), and it is the FeedbackAgent's task to decide whether to honour the 

request or not based on its internal prediction methods. New modules introduced are the 

LocationModule, which provides up-to-date location information in the form of {City, Country} 

parameters and the WeatherModule which, based on the patients current location gives 

information on the current weather (temperature, condition, minimum- and maximum 

temperatures). 
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Figure 9: Detailed overview of the modules involved in the implementation of the FeedbackAgent, 

showing also the new LocationModule and WeatherModule. 

 

Figure 10 shows the inner architecture of the FeedbackAgent module. Handling of a feedback 

request, coming in from the GUIModule every minute works as follows: 

1. A feedbackRequest enters the FeedbackAgent. 

2. The FeedbackAgent requests a list of possible feedbackEvents from the 

EventGenerator 

a. The EventGenerator creates a feedbackEvent: a feedback message with all its 

relevant features (parameters). 

b. The content of the feedbackEvent is provided by the MessageContentManager, 

which delivers the actual feedback message (e.g. "Please go for a walk 

outside") and the associated parameters (e.g. MessageGoOutside=true, 

MessageIsAQuestion=false). 

c. The subject's parameters are added to the feedbackEvent by the 

SubjectContext, which queries the MessageHistoryDatabase for history related 

features (e.g. NumberOfMessageReceivedToday, EncouragingMessages-

ReceivedToday) 

3. The hypothetical feedbackEvents are passed on to the Classifier. 

4. The Classifier uses the WEKAInstanceGenerator to convert the feedbackEvent into a 

WEKA-compatible feedbackInstance. 

5. The Classifier uses its internal classifier (a weka.rules.Ridor classifier) to predict 

compliance of the feedbackInstance. 

6. The Classifier sends the classification result back to the FeedbackAgent (main 

component). 

7. If the predicted compliance of the feedbackInstance is "false", the feedback request 

coming from the GUIModule is ignored. 

8. If the predicted compliance of the feedbackInstance is "true", the feedback request is 

honoured, and the feedback message is sent to the GUIModule. 
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Figure 10: Internal architecture of the FeedbackAgent module and all of its sub-components. 

 

If the FeedbackAgent decides the time is right for presenting the patient with a feedback 

message, the message is displayed as usual on the PDA's interface (see Figure 11). Then 

after 30 minutes of the patient viewing the feedback message, the FeedbackAgent calculates 

the actual compliance for the message that it sent. This information is then used to update the 

internal Ridor classifier to improve performance, and adapt the classifier slowly to the 

individual patient's preferences. 

 

Figure 11: The PDA activity monitoring and feedback application displaying a feedback message "Take 

a nice walk!" to the patient. From the user interface point-of-view, there is no difference with earlier 

versions of the activity monitoring application. 
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2.6. Conclusion 

 

The Self-Learning, Adaptive feedback module, or Feedback Agent, automatically predicts the 

right timing for presenting the patient with feedback messages on their daily activity levels. As 

a patient receives more feedback, the system updates itself by learning from the patient's 

reaction (compliance) to the given feedback. In this way, the system is self-learning and 

adaptive to the patient's personal preferences regarding feedback. The theoretical work 

behind the prediction of feedback compliance has been published in [Akker et al., 2010], while 

the implementation of the algorithms on a PDA application is discussed in [Akker et al., 

2011a]. 

Current work in progress on self-adaptive feedback message content is published in [Wieringa 

et al., 2011], while future work in the area of smart, personalized feedback on physical activity 

in the terms of the combination of timing, content and representation is published in [Akker et 

al., 2011b]. 
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