

AMBIENT ASSISTED LIVING (AAL)
JOINT PROGRAMME

PROJECT
Remote health and social care for independent living

of isolated elderly with chronic conditions
(REMOTE, AAL-2008-1-147)

+

DELIVERABLE

D6.1 REMOTE Services Methodology

WORK
PACKAGE NO. WP6 WORK

PACKAGE TITLE Integrated Services

TASK NO. T6.1 TASK TITLE Approaches and methodologies
to building service-oriented

STATUS D VERSION NO. v3
DOCUMENT ID REMOTE_D6.1._REMOTE SERVICES METHODOLOGY

FILE ID REMOTE_D6.1._REMOTE SERVICES METHODOLOGY_v1.doc

PROJECT START
& DURATION

June 1st, 2009
36 Months

AUTHORS1
Laura Pastor, María de las Mercedes Fernández-Rodriguez,
María Fernanda Cabrera (UPM), Olga Gkaitatzi (CERTH/HIT),
Verónica Crespo (ABAMA), Alejandro Aracil Ramón (TSB).

1 Per partner, if more than one partner, provide together

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 2 Version 3

EXECUTIVE SUMMARY

This document presents the REMOTE Deliverable D.6.1 REMOTE Services
Methodology.

It analyses several existing methodologies, specifying their elements and the design
principles that need to be considered for the implementation of the REMOTE
architecture.
As a result, SOA was selected as the most appropriate methodology and SoA
framework to be used for the design and implementation of the REMOTE
architecture.

Based on the Service Oriented Architecture (SOA) and the usage of a multi-agent
architecture, several agents architecture have been analyzed.
Finally, different possible lifecycles have been considered, and the final usage of the
IBM proposal determines the handling of the SOMA Methodology.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 3 Version 3

TABLE OF CONTENTS
REVISION HISTORY .. 5

LIST OF ABBREVIATIONS AND DEFINITIONS .. 6

1 ARCHITECTURAL REFERENCE PARAMETERS IN INTELLIGENT
AMBIENTS ... 8

1.1 Open Architectures .. 8

1.2 Distributed Architectures .. 8

1.3 Service Oriented Architectures (SoA) .. 9
1.3.1 Web Services ... 9
1.3.2 Semantic Services Oriented Architectures .. 10

2 SERVICE AND MIDDLE WARE ORIENTED ARCHITECTURES 12

2.1 SoA Design principles ... 12
2.1.1 Standardized Service Contract .. 12
2.1.2 Service Loose Coupling ... 13
2.1.3 Service Abstraction .. 13
2.1.4 Service Reusability .. 14
2.1.5 Service Autonomy .. 14
2.1.6 Service Statelessness.. 15
2.1.7 Service Discoverability ... 15
2.1.8 Service Composability ... 15

2.2 Services Registry and Search ... 17

2.3 Services Composition ... 18

2.4 Devices Search .. 19

2.5 Agents architectures ... 20
2.5.1 The JADE Platform .. 20
2.5.2 AGLETS (Java library for mobile agents) .. 26
2.5.3 COUGAAR (Cognitive Agent Architecture).. 30

2.6 Advantages and disadvantages (JADE Vs Aglets & Cougaar) 37
2.6.1 Jade advantages .. 38
2.6.2 Jade disadvantages ... 38

3 SOA LIFE CYCLE ... 39

3.1 SoA Life Cycle Proposals .. 39
3.1.1 Dan Foody Proposal .. 39
3.1.2 Miko Matsumura Proposal ... 39
3.1.3 IBM Proposal ... 40

3.2 IBM Life Cycle .. 41
3.2.1 Model ... 41
3.2.2 Assemble ... 41
3.2.3 Deploy .. 41
3.2.4 Manage .. 41
3.2.5 SOMA Methodology ... 42

4 CONCLUSIONS .. 45

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 4 Version 3

LIST OF FIGURES
Figure 1- Topologies of distributed Architectures ... 8
Figure 2- Web Services Evolution ... 10
Figure 3 - Relationship between the main architectural elements 21
Figure 4 - The JADE-LEAP run-time environment ... 22
Figure 5 - Stand-alone execution mode ... 23
Figure 6 - Split execution mode ... 24
Figure 7- JADE Sniffer Agent .. 25
Figure 8 - Structure of an Aglet ... 28
Figure 9 - The Aglet Environment .. 29
Figure 10 - Cougaar Community ... 32
Figure 11 - Cougaar Node ... 33
Figure 12 - Agent Internal Structure .. 34
Figure 13 - Agent Blackboard Contents ... 35
Figure 14 - SOA Quality Management ... 40
Figure 15 - IBM Life Cycle phases ... 41
Figure 16 - SOMA Methodology .. 42

LIST OF TABLES
Table 1 - JADE-LEAP Execution modes .. 23
Table 2 Best technology selected by parameter .. 38

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 5 Version 3

REVISION HISTORY

Revision
no.

Date of
Issue

Author(s) Brief Description of Change

1 11-02-2010 Veronica Crespo Peer review of the document

2 18-06-2010 Ms. Olga
Gkaitatzi

Peer review of the document

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 6 Version 3

LIST OF ABBREVIATIONS AND DEFINITIONS

ABREV. Abbreviation
ACL Agent Communication Language
ALP Advanced Logistics Program
ATP Aglet Transfer Protocol
CDC Connected Device Configuration
CLDC Connected Limited Device Configuration
CPU Central Processing Unit
DARPA Defense Advanced Research Projects

Agency
DAS Device Access Specification
DNS Domain Name System
ERP Enterprise Resource Planning
EU European Union
FIPA Foundation for Intelligent Physical Agents
IMTP Internal Message Protocol
IP Internet Protocol
IIOP Internet Inter-ORB Protocol
HTTP Hyper-Text Transfer Protocol
JADE Java Agent Development Environment
J-ATCI Java Agent Transfer and Communication

Interface
JDK Java Development Kit
JICP JADE Inter-Container Protocol
JME Java Micro Edition
JSE Java Standard Edition
JVM Java Virtual Machine
LAN Local Area Network
LEAP Lightweight Extensible Agent Platform
MASIF Mobile Agent System Interoperability

Facility
MIDP Mobile Information Device Profile
MTP Message Transport Protocol
MTS Message Transport Service
OMG Object Management Group
OS Operating System
OSGI Open Services Gateway Initiative
PC Personal Computer
PDA Personal Digital Assistant
QA Quality Assurance
R&D Research and Development
RFP Request for Proposal
RMA Remote Monitoring Agent
RMI Java Remote Method Invocation
RPC Remote Procedure Call
SDLC Software development Lifecycle
SOAP Simple Object Access Protocol
SOMA Service Oriented Modelling and Architecture
TCP Transmission Control Protocol
TRL Tokyo Research Laboratory

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 7 Version 3

UDDI Universal Description, Discovery and
Integration

UDP User Datagram Protocol
UML Unified Modelling Language
UPnP Universal Plug and Play
URL Uniform Resource Locator
W3C World Wide Consortium
WSDL Web Services Description Language
XML Extensible Markup Language

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 8 Version 3

1 ARCHITECTURAL REFERENCE PARAMETERS IN INTELLIGENT
AMBIENTS

This section proposes several types of architectures inside the software engineering
that can be combined in order to get a final complete architecture for the Intelligent
Ambient proposed, complying with all the REMOTE Project requirements. It is
intended to provide a short explanation of the parameters defining the architecture.
The following sections will specify the technical details of each one of them.

1.1 OPEN ARCHITECTURES

Open architectures are those that adopt a scalable and extensive solution. Open
architectures can be extended after the system implementation, generally by adding
additional circuits, for example, connecting the main system with a chip with a new
microprocessor. System specifications are made public, which allows other
organizations to manufacture the expansion products. In case of REMOTE project,
due to the need of connecting a large variety of devices with different natures, it
should be considered the possibility of being open to any new one that might arise.
Even in the case of new applicable technologies not considered at the beginning of
the project but that may appear during it.

1.2 DISTRIBUTED ARCHITECTURES

Distributed systems are generally the best way to implement network systems, even
though they imply several disadvantages, all of them derived from the network
security control.

In our case, each device will capture and process signals, acting as client and the
middleware1 that is in charge of redirecting them, will act as a server. A distributed
architecture will provide the system with a high scalability. If the number of devices
increases, the system should also allow be extended in a transparent way for the
units that already produced.

There are three possible topologies concerning a distributed architecture:

Figure 1- Topologies of distributed Architectures

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 9 Version 3

The concept of middleware is related to as the intermediate software layer that
provides support to the specific services and applications. Middleware should not be
confused with a specific implementation of the architecture, given that this is a
component of it.

1.3 SERVICE ORIENTED ARCHITECTURES (SOA)
Irrespective of the technology chosen, in order to implement our architecture,
simultaneously we can provide it with the features of another complementary
architecture such as the Service Oriented Architecture. This architectural conjunction
will report a set of very desirable features when covering the Project needs.

There is an existing set of guidelines defined by Thomas Earl in the book “SOA”
broadly supported by the industry that makes certain architectures Service Oriented:

• Formal Contract establishment
• Abstraction of the service
• Low coupling between services
• Reusable Services
• Autonomous Services
• Services without status
• Services should be able to be discovered
• Possibility of service composition

By means of this architecture, it is possible to find several devices that offer services
to the end users (or other services or applications).

Starting from a series of basic services that provide elemental functionalities, service
composition allows aggregating them in a way so a higher level of services is
achieved, therefore better adapted to the user needs. Consequently, service
composition intends to complete the existing space between basic functionalities and
requirements proposed by the user.

SOA development implies a series of practices in the architecture such as the weak
coupling among services, strongly into layers, separation of responsibilities and
integration. Therefore, it is not a product but a way to get to the architecture. SOA
intends to achieve the granularity of the business service adapted to the needs of the
business unit of the Organization, so there is an alignment of the business processes
with the services. The main characteristic that differentiates the last ones from others
is that they are not focused on an interface, but in a contract established between the
schemas communicating with each other by exchanging messages.

If the platform is not designed based on standards and directed to the
interoperability, it is complicated to quickly combine services together in order to
comply with the requirements of the continuous business change.

1.3.1 Web Services

Web Services are simply an implementation of the SOA architecture that complies
with its nature. The World Wide Web Consortium defines it as “A Software
application identified by an URL, whose interfaces can be defined, described and
discovered through XML documents. A Web service supports direct interactions with

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 10 Version 3

other software agents using XML messages exchanged through Internet based
protocols.”

Web Services are currently experiencing an important evolution fostered by the new
concepts of Web 2.0 and Web Semantic. Next figure illustrates the three generations
that are assumed for the Web Services for the next years.

Figure 2- Web Services Evolution

1.3.2 Semantic Services Oriented Architectures

Web Services add a new functionality level to the current Web, being a first step to
achieve the integration of distributed software components using Web standards.
However, the current technology they are dealing with, such as the use of SOAP,
WSDL and UDDI, operates in a syntactic level (some authors call it Syntactic Web),
and even though interoperability among them is considered through common
standards, they still require human interaction. Generally the major disadvantage of
Web Services is the lack of dynamism in the service composition. It is very common
to work with a central control point that establishes the services flux and activates the
services following this flux.

Apparently this is not the best implementation approach in order to adapt to a
dynamic decentralized environment such as the one that is assumed for REMOTE in
particular and to Intelligent Ambients in general, where service composition through
semantic services is presented as a promising approach.

In fact, being able to achieve this goal, describing the Web services in this way would
allow the cooperation between several systems and organizations in a natural way,
with a minimum external intervention. Besides, this paradigm would imply that the
web services provided by a certain organization could be located and used by other

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 11 Version 3

services and/or applications, from the same organization or from other ones, so we
could compose much more complex systems.

Therefore, this architecture appears as a natural evolution of the architectures
implemented through Web services, and therefore Service Oriented.

Web Semantic Services are a step forward to achieve a dynamic composition and
discovery of services, where intelligent systems intent to build services from the user
requirements, without a manual selection of the services. They are built over
knowledge representation technologies, with ontologies describing the domain in a
formal way, and Ambient Intelligence providing methods in order to make the service
composition more autonomous.

Ontologies come from the field of Artificial Intelligence. They are common
vocabularies for the people and the applications that work in a domain. According to
the Ontologies Working Group of the W3C Consortium, ontology defines the term
that is used to describe and represent a certain domain. The term "domain" is used
to denote a specific interest area (hospital, for example) or a knowledge area
(domotics, sensor network, medicine, accounting, product manufacturing, etc.). Each
ontology represents a certain vision of the world with respect to a domain.

Every person has in mind ontologies that are used to represent and understand the
surroundings. These ontologies are not explicit, in the sense that they are not
detailed in a document neither organised in a hierarchic or mathematic way. It is not
necessary to make this knowledge explicit, because it is part that everybody knows.
However, when dealing with non common terminology or when these terms need to
be processed by machines, it is needed to specify the ontologies in a document,
providing them with a format intelligible for the machines.

Machines lack from the ontologies that humans have in order to understand the world
and communicate among them; that is why explicit ontologies are needed. When two
information systems (ERP systems, data bases, knowledge bases) intend to
communicate together, semantic problems that make difficult or impossible the
common understanding and the communication between them appear. There are two
types of semantic problems: domain and name related. Domain conflicts appear
when similar concepts with regards to their meaning, but not identical, are
represented in different domains (for example Doctor in a hospital or at the
university). Regarding the name conflicts there are two types: synonymous and
homonymous. Synonymous occurs when the systems use different names in order to
refer to the same concept (for example employer and employee). Homonymous
appears when the systems are using the same name to represent two different things
(for example driver in an insurance company could be the named insured and the
person that performs the transportation). These understanding problems that can
arise from a communication established between Web Services are solved if the
services definition is done in a semantic way.

Besides, ontologies are very useful in order to facilitate automatic reasoning, that is,
without human intervention. Starting from some inference rules, a reasoning engine
can use the ontologies in order to infer conclusions about them.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 12 Version 3

2 SERVICE AND MIDDLE WARE ORIENTED ARCHITECTURES
This section presents the principles that need to be taken into account in order to
design a Service Oriented Architecture.
Following, service registry and search processes are described, as well as the
service composition feature, provided by SoA.
In order to complement the usage of the SoA, several agent architectures are
described, and their pros and cons are analyzed.

2.1 SOA DESIGN PRINCIPLES

The design principles of SOA according to an industry expert Thomas Erl defined in
his book "SOA: Principles of design are: Standardized Service Contract, Service
Loose Coupling, Service Reusability, Service Autonomy, Service Statelessness,
Service Discoverability, Service Composability and Service Abstraction.

2.1.1 Standardized Service Contract
Standardized service contract principle states that all services contained in the same
inventory of services must be in compliance with the same contract designs
standards. The aim of this principle is to ensure the coherent expression of the
general purpose and functionalities of the service by naming conventions and
consistent expression.

Standardization makes services easier to understand and use. Consistency reduces
understanding efforts and increases the interpretability about what the service can do
and how these features can be accessed.

Thomas Earlf defines the following three types of Service Contract Standardization:

• Standardization of Functional Service Expression: This refers to establish
conventions for describing the functionalities of the service.

• Standardization of Service Data Representation: This refers to establish
conventions for describing the data types and defines schemas for each
information set. Defining schemas provides a mechanism so that different
services can use the same data types while the interoperability is improved.

• Standardization of Service Policies: This refers to the property vocabulary
used to express business rules, which should be standardized to avoid
confusion for consumers of the service. This principle is closely related to the
rest.

An illustration of a bad and a good way to apply the above mentioned principles
follows:

Bad Good
<message name="GetItemRequest">
<part name="RequestValue"
element="bus:ItemIdentificator"/>
</message>
<message name="GetItemResponse">
<part name=" GetItemResponse "
element="bus:Item"/>

<message name="GetInvoiceRequest">
<part name="RequestValue"
element="bus:InvoiceNumber"/>
</message>
<message
name="GetInvoiceResponse">
<part name="ResponseValue"

http://www.soaprinciples.com/p6.asp
http://www.soaprinciples.com/p7.asp
http://www.soaprinciples.com/p7.asp
http://www.soaprinciples.com/p9.asp
http://www.soaprinciples.com/p10.asp
http://www.soaprinciples.com/p11.asp
http://www.soaprinciples.com/p12.asp
http://www.soaprinciples.com/p13.asp
http://www.soaprinciples.com/p8.asp

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 13 Version 3

</message>

In this case there are no conventions on
the names. If the name of the input is
RequestValue it is expected that the
name of the output is ResponseValue.

element="bus:Invoice"/>
</message>

2.1.2 Service Loose Coupling
Service loose coupling principles states that all services should be independent of
the rest of the components of the solution. This principle aims at establishing
uncoupled services reducing the dependence between the service contract, its
implementation, and its service consumers.

If a contract has been well designed, the changes of implementation should not affect
it. In the same way, as far as the contract has not been modified, the implementation
updates should not produce changes in the service consumption.

The main dependences that can be found among the elements of a SOA are: the
relation between the business process and the logic, the relation between the logic
and the implementation, the relation between the logic and the contract and the
relation between the contract and the consumers.

One recommendation in order to reduce the contract dependence with the logic
consists of making a first contract before starting logic solution to keep the contract
complies with an implementation. In this sense, the logic fulfills contract. The problem
appears when a contract is derived from a logic solution, in this case each time the
logic changes, a new contract is built.

2.1.3 Service Abstraction
Services contracts only contain essential information about the services, and these
are limited to comply with the public information in the contract. The Service
Abstraction principle emphasizes the need to hide the details of a service as much as
possible.

Service’s consumers do not need to know which database or which programming
language has been used. These details unnecessary distract consumers from
focusing on what really matters, understanding the service’s use.

Abstraction favours implementation’s changes without major impacts. As the service
can be invoked, it should be specified how to utilise its functionality it and its use
limitations, such as the maximum number of concurrent users and the maximum
usage time. Details such as the programming language used, the functions called by
the implementation or the last error thrown are additional data that must be hidden.

Following, a good and a bad example of the information about a service that needs to
be specified are provided.

 Bad Good
Metadata The service is developed

with Java and connected
The service is invoked
using SOAP.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 14 Version 3

to MySQL.
Functional Includes internal functions

like validating user,
connecting to database,
management pool
connection.
Includes functions not
available to consumers
like private addItem (item,
user).

Includes public functions
like addItem (item),
deleteItem (item),
searchItems.

Quality The connection pool
maintains open 4
connections.

The service is only
available during 6 hours a
day.
The service only supports
40 users concurrently.

2.1.4 Service Reusability
This principle states that all services must be designed and built thinking about
reusing them within the same application, within the domain of enterprise
applications or even within the public domain for massive use. This principle raises
numerous design considerations to guarantee that individual service capabilities are
properly defined in relation to an independent service context, and also that the
necessary reuse requirements are facilitated.

Even if a service is built around a business process, service design must be general,
not just focused on a single consumer, designers should determine the potential
consumers. In this sense, the service must be designed to be invoked by different
consumers.

In order to avoid implementing a service already existing and properly performing,
the service should be made publicly available.

Example: We should imagine a scenario of a programmer that has been hired to
design and implement a service to manage a store that sells clothes. This
programmer thinks that the service needs to be able to add, delete and search
garments by category, so he needs to define a data type called “clothing”, covering
all types of garments. This way of thinking may cover more or less the needs of any
clothing store, however, all the stores manage inventories and need to be aware of
what they currently have, and need to update this stock with the purchase and sale of
products. If the initial service, instead of using a data type called “clothing” uses a
generic type called “item,” the data type “clothing” would be a particular case of “item”
and the service can be used for managing the inventory of potentials stores.

2.1.5 Service Autonomy
Service autonomy SOA design principle states that services must have a high level
of control over their underlying runtime and execution environment. In this sense,
every service must have its own runtime environment. In this way, services are totally
independent and it can be ensured that they can be reused from the execution
platform point of view.

Thomas Earlf defines the following categories of service Autonomy:

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 15 Version 3

• Service Contract Autonomy: This refers to two services that can not share
the same functionalities.

• Shared Autonomy: This occurs when the resources are shared with other
services or other parts of the architecture.

• Service Logic Autonomy: This happens when the logic components of the
service are dedicated, but other resources like databases are shared.

• Pure Autonomy: This occurs when all resources are dedicated and can be
isolated.

2.1.6 Service Statelessness
Service statelessness principle states that services should avoid resource
consumption by managing state information only when necessary. The management
of state information affects the scalability and availability of a service. According to
this principle services are designed to have state information only when needed.

A reduction of the managing load of the state information leads to a higher degree of
service reusability, because in this way service would be more generic.

A service is in an active state when it is invoked or executed, otherwise it is in a
passive state when it is not in use. It can be stated that a service is stateless when it
is in an active state but it is not processing the state data. However, if the service is
active and it is processing the state data, the service is stateful.

There are three different types of state data: session data, context data and business
data. Session data are those stored during the communication with the client; context
data refers to the data exchanged between services and business data are the ones
associated with the persistence data.

Handling large amounts of data could be done in a progressive way, therefore only
using the data needed, so scalability is not compromised. However, if the service has
pure autonomy, it can use a database in order to store and retrieve temporal activity
information and being kept stateless as long as possible.

2.1.7 Service Discoverability
Communicative Metadata facilities find and interpret correctly the services. The
service discoverability principle states that every service must be able to be
discovered in some way so it can be used, so the accidental creation of services
providing the same functionality can be avoided.

Service registry is used to support discoverability and interpretability of the services.
This mechanism sets formalities to facilitate the location and recovery of a service
through Metadata. The discoverability refers to the ability of detection and
interpretability refers to the ability to be understood.

This principle is strongly linked with the principle of Service Reusability, because only
if a service is found and understood in a correct way, it can be avoided to implement
again something already existing.

2.1.8 Service Composability
Service composability design principle states that all services are effective
composition participants, unaffected by the size and complexity of this composition.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 16 Version 3

In this sense, all services must be built considering that they can be used to
implement generic higher level services, based on lower-level services.

In order to guarantee that a service can be used in a composition, it is necessary to
assure that the concurrence of users and the data types of contract are as generic as
possible, offering diverse possibilities to access the same type of functionalities.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 17 Version 3

2.2 SERVICES REGISTRY AND SEARCH

One of the premises of the Service-Oriented Architecture is that services should be
accessible from outside. In this sense, there should be a place where other
applications can know which services are available and how to access them. This
place is called Services Repository. All services available in the system should be
registered in the services repository, allowing anyone to make a consultation and if
needed, make the discovery of them.

In order to register the service in the services repository, a formal contract is needed.
This contract specifies the details for the service search. A further evolution of this
discovery method is based on a semantic modelling, providing much more useful and
accurate information about the service to be discovered.

Service linking with a web service can be static or dynamic. It is static when the link
with the service happens at design time. However, it is dynamic when the link with
the service happens at runtime.

UDDI organizations defined a standard for services registries, which is an
intermediary between consumers and service providers. The types of information
stored in an UDDI structure are the following:

• BusinessEntity: includes the necessary information to describe the provider
of the service.

• BusinessService: refers to non-technical information associated with a
service.

• BindingTemplate: includes the technical information necessary to access
the service such as the URL.

• tModel: refers to the technical model.

When registering a service, it is common to use the different types of UDDI registries,
for example one internal to the organization, a registry that belongs to partners and a
public node management in companies like IBM.

The search of services is facilitated by the use of UDDI registries, grouping services
by the business entity or by categorizations.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 18 Version 3

2.3 SERVICES COMPOSITION

The composition of services is a feature acquired by Service Oriented Architectures
once they are ready to be discovered. The goal of service composition is to create
different layers of services in which each layer is based on the composition of the
above services. Thus a dynamic and independent system in which a service can be
replaced in a very versatile way with a new composition of its component services is
obtained.

Depending on the proximity to business processes, there are different levels of
services. It usually exists a first level called domain level, which encompasses all
those services related to a specific domain of business; the second level is a
business process level, where clearly defined business processes that can be
pursued are located, their own business services that include operations common to
all business processes and last infrastructure services where communication
services, event services, discovery services, similarity search services, logging
services or services in context can be found .

In a services composition, services have two roles depending on the service’s
position in the configuration. A service is a controller when it is the head of the
composition. In this case, the capabilities of the controller will use capabilities of other
services. On the other hand, if a service is used as an element of the composition, it
is called composition member. The capabilities of a composition member are
invoked.

When the composition is very simple it is called primitive composition. In this case
few services are involved and the relationships between them are very simple.
However, when the configuration of the composition is more convoluted and
requirements are more compound, so we are talking about complex service
compositions, a mature service inventory is required.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 19 Version 3

2.4 DEVICES SEARCH

Under the REMOTE project, devices need to make requests to services. In this
sense, it is important to consider that technologies may be used so the devices can
connect and invoke the services.

The first technology to be considered is UPnP, which defines an architecture that
allows connections from smart appliances, wireless devices and computers in all
possible combinations. This architecture provides a distribution network that
promotes open access using technologies such as TCP / IP allowing data transfer
devices.

The UPnP Device Architecture is designed thinking of using a zero-configuration and
to automatically discover a variety of devices. In this sense, devices can join the
network, obtaining an IP address, share their capacity and discover other devices
that are present. The device is able to disconnect from the network seamlessly when
desired.

UPnP uses Internet protocols such as TCP, IP, HTTP, UDP, and XML. It uses a
declarative language expressed in XML to create the contracts, which are
communicated through HTTP. The advantage of this architecture is that it does not
use drivers, but common protocols. UPnP is also independent of the programming
language and the operating system.

Another technology to be considered is the one developed by Sun Microsystems
called Jini, which provides a mechanism to connect devices to a network without the
need to be previously configured. Jini also has a discovery process of devices to
detect when they are connected to the network allowing them to report on their
capabilities. After executing the discovery process an IP address is provided to the
device in the network.

In Jini, each device provides to the rest of devices information about the services,
driver and interfaces that they use. This architecture is fully distributed and no device
is a controller or a root network. There are no limitations to the constant connection
and disconnection of devices. Jini architecture does not need a central computer to
control the devices connected to the network.

The above mentioned technologies are contained in the internal structure of OSGI,
which acts as the lowest layer of service that is able to detect devices that are within
the scope of the project. This is what will enable devices to connect and invoke
services of the REMOTE project.

OSGI aims at defining open specifications for designing software compatible
platforms that can provide multiple services. Although OSGi defines its own
architecture, it has been designed for compatibility with Jini or UPnP. The OSGi
specification has been defined with a set of APIs for developing basic services, such
as logging, HTTP server and the Device Access Specification (DAS), which allows
devices to discover the services offered by them.

One of the fundamental elements of the OSGI architecture is the Service Platform,
located on the local network and connected to the service provider through a
gateway at the operator's network. This element is responsible for enabling

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 20 Version 3

interaction between devices or networks of devices using different technologies to
communicate.

Finally, the remarkable benefits of using OSGi are:

• The services can be removed or added without rebooting the system.
• It is possible to create services providing increased functionalities to the initial

ones.
• OSGI has its own security layer which allows increasing the security of Java

setting permissions to register or access services.
• Libraries are shared, which allows memory savings.
• It checks dependences and avoids execution conflicts.
• Several versions of the same service can coexist.
• It enables life cycle management of services. OSGI can also monitor and

react to life cycle changes in the service.

2.5 AGENTS ARCHITECTURES
Agent’s architectures are formed by a series of components defined by P. Maes as
“Computational systems that are located in complex dynamic environments perceive
and act in an autonomous way, developing a set of tasks and fulfilling objectives for
the ones they were designed”.

According to the artificial intelligence principles, an agent has the following
properties: autonomy, sociability, reaction capacity, initiative, benevolence and
rationale.

If a system following these principles has two or more intelligent agents, it becomes
multi-agent.

Following, some examples of relevant multi-agent architectures are provided.

2.5.1 The JADE Platform

2.5.1.1 Introduction
The Java Development Framework (JADE) is a middleware for the development and
run-time execution of peer-to-peer applications which are based on the agents’
paradigm and which can seamless work and interoperate both in wired and wireless
environment.

It is used as a higher-level library that enables easier and more effective application
development by providing useful services for a variety of applications, such as
information access, encodings, communication and resource control. JADE has been
implemented fully in Java language and it can be seamless executed on every typical
type of Java Virtual Machine.

Moreover, “JADE is used for the development of distributed multi-agent applications
based on the peer-to-peer communication architecture. The intelligence, the initiative,
the information, the resources and the control can be fully distributed on mobile
terminals as well as on computers in the fixed network. The environment can evolve
dynamically with peers that in JADE are called agents that appear and disappear in
the system according to the needs and the requirements of the application
environment”.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 21 Version 3

2.5.1.2 JADE architecture
Figure 3 shows the main architectural components of a JADE platform. A JADE
platform is composed of agent containers (agents’ groups) that can be distributed
over the network. Agents live in containers which are the Java processes that provide
the JADE run-time and all the services needed for hosting and executing agents.
There is one special container, called the main container, which represents the
bootstrap point of a platform: it is the first container to be launched and all other
containers must register with it. The diagram in Figure 3 schematizes the
relationships between the main architectural elements of JADE.

Figure 3 - Relationship between the main architectural elements

The programmer identifies containers by simply naming them; by default the main
container is named ‘Main Container’ while the others are named ‘Container-1’,
‘Container-2’, ‘Container-3’ etc. The Context Broker Architecture (CoBrA) will be
based upon JADE architecture. The CoBrA will use and take advantage of JADE
facilities and moreover it may extend some of them.

2.5.1.3 Running JADE Agents on Devices
JADE agents can run on multiple and different type of devices. They can run on
smart phone devices, on PDAs or PCs. JADE provides additional libraries (add-ons)
in order to support it. The LEAP add-on replaces certain parts of the JADE kernel,
forming a modified run-time environment that is identified as JADE-LEAP and which
can be deployed on a wide range of devices.

JADE-LEAP can be shaped in three different ways corresponding to the three main
types of Java environments:

• JSE: to execute JADE-LEAP on PCs and servers in the fixed network running
JDK1.4 or later.

• pJava: to execute JADE-LEAP on hand-held devices supporting JME CDC.
• MIDP: to execute JADE-LEAP on hand-held devices supporting MIDP such

as Java-enabled CLDC smart phones.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 22 Version 3

Figure 4 - The JADE-LEAP run-time environment

The developers can generally deploy JADE agents on JADE-LEAP and vice versa
without changing the code. However, JADE containers and JADE-LEAP containers
cannot be mixed within a single platform. JADE-LEAP platform and a JADE platform
can, of course, communicate as specified by FIPA, e.g. by using the HTTP Message
Transport Protocol.

2.5.1.4 Message Transport Service
The Message Transport Service is responsible for managing all message exchange
between peers.

2.5.1.5 MTP
To promote interoperability between different platforms, JADE implements all the
standard Message Transport Protocols (MTPs) defined by FIPA, where each MTP
includes the definition of a transport protocol and a standard encoding of the
message envelope. JADE always starts an HTTP-based MTP when initialising a
main container; there is no MTP activated on normal containers. This creates a
server socket on the main container host and listens for incoming connections over
HTTP. Internally, the platform uses a transport protocol called IMTP (Internal
Message Transport Protocol) which is described in the next section.

2.5.1.6 IMTP
The JADE IMTP (Internal Message Transport Protocol) is solely used for
exchanging messages between agents living in different containers of the same
platform. It is different from inter-platform MTPs, such as HTTP. As it is only used for
internal platform communication, it does not need to be compatible with any FIPA
standards. The JADE IMTP is not only used to transport messages, but also to
transport internal directions essential to manage the distributed platform, as well as
to monitor the status of remote containers. For example, it is used to transfer a
command to order shut down a container.

JADE was designed to allow selection of the IMTP at platform launch time. Up to
date, two main IMTP implementations are available. One is based on Java RMI and
is the default option. Using RMI it is possible to invoke methods in a remote way so
the communication between servers in distributed applications can be carried out
based on Java. The second one is based on a proprietary protocol using TCP
sockets that circumvents the absence of support for Java RMI in the JME
environment; this is started by default when initiating the JADE LEAP platform.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 23 Version 3

2.5.1.7 THE LEAP IMTP
Though JADE and JADE-LEAP are almost identical from an external point of view,
they are quite different internally. The normal JADE IMTP is based on Java RMI and
this is not suitable for mobile devices. JADE-LEAP therefore uses an alternative
IMTP based on a proprietary protocol called JICP (Jade Inter Container Protocol).
The difference between the two protocols (RMI and JICP) is the main reason why a
JADE-LEAP container cannot register with a JADE main container.

2.5.1.8 JADE execution modes
The following table summarizes how the two execution modes (‘stand-alone’ mode
and split mode) are supported in different environments targeted by JADE-LEAP.

Table 1 - JADE-LEAP Execution modes

The split mode has been successfully applied to the ASK-IT EU project, while the
standalone mode is supported by Windows Mobile devices which have a CDC
configuration. These devices run an independent JVM such as J9, Jbed etc. and are
also able to support the split execution mode.

When launching the JADE run-time using the split execution mode, the user is not
creating a normal container (as in stand-alone mode), but a very thin layer called the
front-end. The front-end provides agents with exactly the same features of a
container. However, it implements only a small subset of them directly, while
delegating the others to a remote process called the back-end. The front-end that
runs in the device is more lightweight than a complete container.

Figure 5 - Stand-alone execution mode

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 24 Version 3

Figure 6 - Split execution mode

Ιf the connection between the front-end and the back-end goes down (e.g. In case
the cell-phone host enters a dead spot), messages to and from agents living in the
front-end are buffered in both the back-end and the front-end. As soon as the front-
end re-establishes a connection, buffered messages are delivered to their receivers.

The IP address of the mobile device is never seen by other containers in the
platform, since they always interact with the back-end. As a result, the IP may
change without any impact to the application.

2.5.1.9 Admin and Debugging JADE Tools
There are various tools provided with the JADE framework for administrative
purposes. The most important of them are the following:

• The platform management console or the JADE RMA (Remote Monitoring
Agent) is a tool that implements a graphical platform management console.

• The Dummy Agent is a very simple tool sending ACL messages to test the
behaviour of another agent.

• The Sniffer Agent is a tool used to sniff, monitor and debug agents’
conversations.

• The Introspector Agent is a tool used to debug a single agent.
• The Log Manager Agent allows the logging levels of each JADE platform

component to be changed at run-time.
The Event notification Service and the JADE Tool Model is a platform-level
service interpreting and routing generated events (e.g. agent born, message sent) to
all agents subscribed to receive notifications

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 25 Version 3

Figure 7- JADE Sniffer Agent

The JADE Sniffer Agent can be used to view the message exchange between
agents, as it is depicted in above figure.

2.5.1.10 JADE Conclusions
“JADE provides the basic services necessary to distributed peer-to peer
applications in the fixed and mobile environment. JADE allows each agent to
dynamically discover other agents and to communicate with them according to the
peer-to-peer paradigm. From the application point of view, each agent is identified by
a unique name and provides a set of services. It can register and modify its services
and/or search for agents providing given services, it can control its life cycle and, in
particular, communicate with all other peers”.

Agents communicate by exchanging asynchronous messages, a communication
model almost universally accepted for distributed and loosely-coupled
communications, i.e. between heterogeneous entities that do not know anything
about each other.

JADE can be applied on limited constraint devices by providing specific add-ons. It
supports scalability by providing the opportunity of executing multiple parallel tasks
within the same Java thread.

It supports mobility of code and of execution state. An agent can stop running on a
host, migrate on a different remote host and restart its execution from the point it was
interrupted.

Furthermore, it supports yellow-paging by advertising services that can be
distributed across multiple hosts.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 26 Version 3

Although JADE has been successfully used on peer-to-peer (client/server) distributed
system architecture in many commercial products and EU projects, it has not been
used for R&D yet.

2.5.2 AGLETS (Java library for mobile agents)

2.5.2.1 Introduction
Aglets have been developed at the IBM Tokyo Research Laboratory (TRL) from
Mitsuro Oshima and Danny Lange. They were responsible for the most of the 1.x
releases. However version 2.x is totally open source and can be found at
Sourceforge.net.

“Aglets have been immediately involved in the realization of TabiCan, a kind of virtual
agent-populated travel agency. Unfortunately, after a good start, IBM decided to give
Aglets to the open source community, and this is when SourceForge appears. In the
beginning, the SourceForge releases have been only bug-fix ones, but then
something changed and the library version evolved to the 2.x series. The 2.x thread
has new improvements in the security management, and it is more compatible with
the Java 2 security mechanism than the 1.x releases. Furthermore, it includes a log4j
based logging system and a few bug-fixes from the older version”[16].

Internet can be considered as a distributed, massively parallel supercomputer that is
able to connect different elements such as repositories, databases, intelligent agents,
and mobile code. It is possible to send your personalized agents to roam Internet in
order to perform diverse task such as monitor Web sites.

Talking about Aglets is talking about mobile agents that are a technology that
promise many benefits in net work computing. In general terms, “a mobile agent is a
program that can migrate from one computer to another for remote execution”. There
are several characteristics that make a language useful to be use for writing mobile
agents and are shown below:

• Their support of agent migration.
• Their support for agent-to-agent communication
• They allow agents to interact with local resources
• Security mechanisms
• Execution efficiency
• Language implementation across multiple platforms
• The language's ease of programming of the tasks mobile agents perform.

For these reasons, Java is an appropriate language for Aglets development.

“Aglets are Java objects that can move from one host in the network to another. Aglet
that executes on one host can suddenly halt execution, dispatch to a remote host,
and start executing again. They can even take along its program code as well as the
states of all the objects they are carrying”[16].

Main objectives of Aglets are [16]:

• “Provide an easy and comprehensive model for programming mobile agents
without requiring modifications to Java VM or native code”.

• “Support dynamic and powerful communication that enables agents to
communicate with unknown agents as well as well-known agents”.

• “Design a reusable and extensible architecture”.
• “Design a harmonious architecture with existing Web/Java technology”.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 27 Version 3

Finally, it is important to compare Aglets versus Applets because Aglets is
considered an evolution of the model of network-mobile code implemented by Java
applets. Both technologies require a host Java application to be running on a
computer, by the most important difference between Aglets and Applets is that when
an Aglet travels across the networks, it carries its state in order to continue running,
because an Aglet is a Java running program.

2.5.2.2 Definition

An Aglet (or "agile applet") is a “small application program or applet with the
capability to serve as a mobile agent of services in a computer network”. An aglet
has these characteristics [16]:

• Object-passing capability. “It is a complete program object with its own
methods, data states, and travel itinerary that can send other aglets or pass
itself along in a network as an entity”.

• Autonomous. “An aglet has the ability to decide on its own what actions
should be taken and where and when to go”.

• Interaction with other program objects. “It can interact locally with other
aglets or stationary objects. When necessary, it can dispatch itself or other
aglets to remote locations in order to interact with other objects”.

• Disconnected operation. “If a computer is currently disconnected from the
network, the aglet can schedule itself to move when the computer is
reconnected”.

• Parallel execution. “Multiple aglets can be dispatched to run concurrently in
different computers”.

An aglet is a class or template in the Java object-oriented programming language,
and the mobile agent instances of its use are also called aglets.

2.5.2.3 AGLET model structure

The basic elements of the Aglet Model are the following:

• Aglet: a mobile java object that visits aglet-enabled hosts in a computer
network. It is autonomous and reactive.

• Proxy: representative of an aglet that protects the aglet’s public methods like
a shield from direct access. A proxy is also able to hide an aglet real location
(location transparency).

• Context: an aglets workplace. A context provides a uniform environment in a
realm of heterogeneous hosts for an aglet to run in.

• Identifier: every aglet has a globally unique identifier bound to itself
unchangeable during its entire lifetime.

2.5.2.4 AGLETS workbench

The IBM Aglets Workbench (AWB) allows users to create aglets. The AWB consists
of a development kit for aglets and a platform for their execution. It is based on the
aglet object model, whose major elements are aglets, contexts and messages. The
Aglet Transfer Protocol (ATP) and the Aglet API (A-API) are further AWB
components that define how to transport aglets and how to interface with them and

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 28 Version 3

contexts. “Both the Agent Transfer Protocol and the Workbench framework protocol
have been offered to the Object Management Group (OMG), an industry standards
body, as a proposal for a standard Mobile Agent Facility. IBM is offering the
Workbench for free to developers”.

Why to choose Aglets?

• One of the pioneer agent technologies using Java.
• Mobility and itinerary characteristics keys are both really important when

agent technology is used, and Aglets Workbench support them. It’s enforced
with good security facilities: If an Aglet wants to move to a remote host, this
one has to be running an aglet server and security measures solved.

• They have some key characteristics to improve agility.

Aglet Structure
The following picture shows us the parts of an aglet: proxy and core. In aglet core we
can found all the aglet’s methods and internal variables, and it’

Figure 8 - Structure of an Aglet

2.5.2.5 Decreased Network Load

Network load is reduced using mobile agents because each aglet migrates to a
desired local server, then once there, aglets start sending message each other. By
the way, message passing could be asynchronous or synchronous.

Aglets mobility facilities:

• Agent Transfer Protocol (ATP): Is an application-level protocol for
distributed agent-based systems. ATP offers the opportunity to handle
mobility of the agents in a general and uniform way, it means it does not
matter in which language is programmed each agent when we are
transferring mobile agents between computers.

• Java Agent Transfer and Communication Interface (J-ATCI): Is a simple
and flexible programming interface that enables the developers to work with
ATP but without having to build it into them for wire communication.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 29 Version 3

2.5.2.6 Itinerary class.

Agents have the ability to make decisions by themselves based on their environment,
carrying out their tasks, even when the connection with their host is down. These
tasks are programmed implanting the itinerary class associated to each Aglet, it
contains:

• Travel plan.
• Host destination.
• Actions to do at host.

2.5.2.7 Aglets and their environment

There are two important levels of communications present at Aglet environment. We
are talking about communication between aglets and hosts, and communication
between aglets.
When aglets tries to interact each other, it is carried out using a AgletProxy object on
behalf an aglet, even if they are in the same host, and it is the responsible of
requesting aglets to take actions. These communications are always established
through an agent host, for this reason, it is not very common to invoke some agent’s
method directly. On the other hand, when an aglet tries to establish a communication
with a host, it is carried out using an AgletContext object to get a context identifier
and after that adding new aglet.

2.5.2.8 Server Objects: Contexts.

Servers behavior can change without the consent of the owner, this is caused by a
mobile agent, it can migrate to a compatible server called contexts, where aglets can
interact with each other. This compatible filter is a good security measure, because if
an aglet tries to access to a private data the security manager stops the access.

Figure 9 - The Aglet Environment

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 30 Version 3

Aglets could be used for transmitting malicious programs, but in order to prevent
these attacks aglets hosts have very severe security restrictions to avoid actions of
aglets that has not been originated locally.

2.5.3 COUGAAR (Cognitive Agent Architecture)

2.5.3.1 Introduction

Cougaar is an acronym for "Cognitive Agent Architecture” and it is defined as a Java-
based software architecture for building highly scalable distributed agent-based
applications in a powerful and maintainable way. In fact, it is designed to support
tightly coupled members effectively using a hybrid of shared-memory blackboard
interactions, and loosely coupled members using distributed message passing.

Cougaar was a DARPA (Defense Advanced Research Projects Agency) project
developed from 1996 until 2001 under Advanced Logistics Program or ALP, whose
purpose was to model military logistics using distributed agent technologies. Here we
have some points demonstrating how complex the military logistics problem is:

• Millions of different object types to be managed
• Tens of thousands of different interleaved discrete business processes
• Thousands of different organizations with their own physical plants,

constraints and user requirements
• Complex, continual interplay between planning and execution
• Over a thousand legacy databases and systems with different data models

and protocols.

Over a period starting in 2001 until 2004, Cougaar development and maintenance
was carried out, and then continued by BBN under a new DARPA program,
Ultra*Log, to enhance the Cougaar platform with components offering: robustness,
security and scalability.

The complexity of managing an ontology of so many distinct object types using
standard software tools is really inadequate.

There are two factors determining that Standard software modeling techniques are
really inadequate to be used: managing an ontology of a lot of distinct object types
and the complexity of developing a standard top-down decomposition of the
aggregate business processes. In this way, Cougaar was designed to approach
these problems, not only reduced to the military domain, because it is an
independent architecture for large scale distributed agent systems. Following
categories would be enhanced using Cougar:

• Problem domains that entail hierarchical decomposition and tracking of
complex tasks.

• Complex application domains involving integration of distributed separate
applications and data sources.

• Domains involving the generation and maintenance of dynamic plans in the
face of execution.

• Highly parallel applications with relatively loose-coupling and low-bandwidth
communications between parallel streams.

• Domains too complex to model monolithically, best modeled by emergent
behavior of components.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 31 Version 3

2.5.3.2 COUGAAR architecture
Cougaar is a large-scale workflow engine built on a component-based distributed
agent architecture. Within agents, components interact via a local publish-and-
subscribe mechanism. The agents communicate with one another by a built-in
asynchronous message-passing protocol. These relationships are dynamically
negotiated, using a hierarchical service discovery mechanism. Agents organize
themselves into communities to monitor security conditions and agent availability,
allowing them to adaptively control their behavior.

2.5.3.3 COUGAAR society
In the Cougaar architecture, an Agent is the principal element and this autonomous
software entity models a particular organization, business process or algorithm. A
Cougaar Society is a collection of Agents that interact to collectively solve a
particular problem or class of problems. The problems are typically associated with
planning, where the plan objective and constraints may be continually changing and
replaning in the face of execution. A Cougaar Community is a notional concept,
referring to a group of Agents with some common functional purpose or
organizational commonality. Thus a Cougaar society can be made of one or more
logical communities, with some Agents associated with more than one community
and other Agents not associated with any. The society shares a DNS-like
Namespace that allows all agents to resolve references to one another, and which
may be monolithic or distributed/redundant. Within a Cougaar Society, agents
execute on a node, which is a single Java Virtual Machine containing multiple agents.
All agents on the same node share the same processor, memory pool, disk and
communication channels. The allocation of agents to nodes is not necessarily
domain related, but rather based on a distribution of agents to available resources.

2.5.3.4 COUGAAR Community
A Cougaar community is a notional concept. Things look similar to the view of a
society: it is composed of other communities, perhaps sub-communities, and Agents
with some common purpose or organizational relationship. Communities are often
hierarchical and a given Agent may be a member of several communities.

The most significant characteristic of a community is that it presents a single
coherent interface to the rest of the society for a given capability. Ideally, we can
identify such interfaces that encapsulate and hide the internal structure of how a
given function is accomplished. Recursively, as this implementation breaks down into
modules, it makes sense to think of these sub-components as sub-communities,
each one with its own interface.

A Cougaar application using communities will typically group agents with similar
roles, physical attributes and/or organizational features. Members of a community
may also be assigned particular roles therein.
Attribute-based messages facilitate the delivery of messages in a community or
between communities. In this way, there is some notional interface of what it provides
to the society. There is typically more traffic among Agents in a community, using
terms and activities only this community understands, compare to traffic between
communities.

In Figure 10, we see a Cougaar community containing a series of logically related
Agents.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 32 Version 3

Figure 10 - Cougaar Community

2.5.3.5 COUGAAR Node

A Node is a single Java Virtual Machine (JVM) instance that may contain and
maintain multiple Agents. Talking about efficiency, it is recommended a 1:1
correspondence between the node and the hardware platform. Agents are grouped
into a node based on equitable sustainable sharing of computer resource
requirements among all agents. Therefore it is helpful to think of a node as a special
class of unnamed Cougaar communities, where the logical grouping is by physical
machine locality.

Agents, belonging to the same node, are sharing the same CPU (memory and disk)
competing for bandwidth traffic. The node works like a router of messages for the
Agents it is hosting: messages to other Agents in the same node are passed directly
within the same JVM, efficiently short-circuiting the message transport layer;
messages to Agents in different nodes pass through a Message Transport layer, that
passes the message through the network to the receiving node, which then routes it
to the appropriate Agent within that node.

In Figure 11, we see a Cougaar node containing several Agents, with message traffic
passing among internal Agents as well as inter-node message traffic for external
Agents.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 33 Version 3

Figure 11 - Cougaar Node

2.5.3.6 Cougaar Agent Internals
Agents are the first-class members of a Cougaar society. Agents communicate with
each other point-to-point by sending messages via the node-level Message
Transport facilities. Agents are themselves completely generic: all Agents in a society
will, for most purposes, have an identical code base and being instances of the same
class.

At the most basic level, Agents contains a Blackboard and one or more Plugins. The
Plugins are software components that are added to an agent to contribute with a
specific piece of application business logic. These Plugins add a domain-specific
behavior which determines how the agent responds to the messages received from
its peers, and they operate by publishing content and subscribing objects via a fairly
traditional-looking Blackboard. These Cougaar Blackboards are not themselves
distributed, and its modifications are transaction controlled using a membership
model, but it never changes to referenced or inner structure. Blackboard contents are
segmented into sets of logically-related objects by Domains.

A Domain is a specification of the language used by Plugins to communicate with
each other and with related Plugins in other Agents. Each Domain contains several
LogicProviders which are components that transform blackboard objects into
messages to be properly received into other Domains. These messages are queued
and managed by each Agent.

Figure 12 illustrates aCougaar Agent with its internal structure exposed, showing the
Blackboard and Plugins.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 34 Version 3

Figure 12 - Agent Internal Structure

2.5.3.7 Cougaar Blackboard Contents

Firstly, Plugins publish and subscribe any object to the Blackboard, but the only
necessary object types needed for collaborative planning are Tasks, Assets, and
PlanElements. Tasks are defined like requests from one agent to another to plan an
operation. When tasks are created or decomposed they eventually must be allocated
to an asset, in this way, assets are simply the consumers of tasks. For example, an
important type of asset is an Organizational Asset, which represents a proxy to
another Agent. Finally, tasks may be allocated to an asset resource, expanded into
subtasks or aggregated with other tasks, therefore, disposition of tasks is contained
in PlanElements.

Each Agent owns its blackboard and its contents are visible only to that Agent. Every
sharing of blackboard state is done by explicit push-and-pull of data through inter-
Agent tasking and querying. In this way, Cougaar is able to maintain fine-grained
state in individual Agents while sharing only high-level synopsis information around
the society, making the management of information scalable and efficient.

There are two fundamental concepts related to distributed management of the
blackboards:

• “Time-phased locality of reference”: Representation of an object may be
present parallel in multiple Agents without fear of conflict, but it is only actively
managed at one place at time.

• “Managed inconsistency”: Agents work independently and asynchronously
on messages passed from one to another. They respond dependently and
asynchronously to replies received from Agents, so there is no
synchronization control imposed. Despite of everything, this feature allows the
agent to work without delays waiting for another Agent to get its job done, or

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 35 Version 3

recover from a network problem, or a burst of requirements from yet another
agent. Although, it clearly shows the explicit inconsistency of Cougar.

Figure 13 illustrates the contents of the blackboard of a given Agent. The blackboard
contains a dynamic chain of plan elements, tasks and assets.

Figure 13 - Agent Blackboard Contents

2.5.3.8 Top Level Design Principles
Cougar architecture is based on different design principles that can be described as
follows:

• Composability. This pattern design is very common. It tries to decompose
complex problems into smaller. We can see this feature in the components
we have discussed:

o Agents are made up of many Plugin components, each providing a
small piece of business logic or functionality, allowing the Agent’s
behavior to emerge from the composed pieces.

o Assets are made up of PropertyGroups, which contain a cohesive set
of data slots, often from a single data source. Assets are further made
up of Prototypes, which capture standard patterns of PropertyGroups
that are invariant over a large set of instances.

o Communities are made up of smaller Communities and Agents.
Societies are, in turn, made up of Communities.

o A Blackboard contains logically separated sets of objects grouped into
Domains by their common application language. Each Domain
specifies a series of Logic Providers, which allow the Domain’s logic to
be translated into other co-resident languages, including Cougaar
Messaging.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 36 Version 3

• Information Hiding and Encapsulation. Components of the Cougar
architecture have access to all the data needed, but no more, enhancing
scalability pattern of the Cougar society. It is easy to understand this point by
studying some component’s behavior. For example, Agents are not allowed to
see into the blackboards of other Agents and must use standard interfaces to
communicate with other Agents. Plugins cannot see the state of other
Plugins. Communities have clear interfaces with one to another, but they hide
their internal Agent configurations.

• Time-Phasing. Expected quantities, costs, values of different entities will
change over the course of a planned operation. All information about physical
entities is time-phased.

• Dynamic Replanning and Execution Monitoring. A Plan is designed on a
continual dynamic negotiation between Agents and Plugins, based on real
world requirements, situation information and asset availability. Cougaar
forces preplanning when some variables have changed to generate an
optimized solution. For this reason, the plan is always monitored.

• Security. Infrastructure core software, the Plugin modules and configuration
information are designed to be secure traffic interceptions or corrupted
configurations.

• Robustness. Cougar applications are designed to survive the loss of any
individual components and automatic recovery of lost agents. In addition,
there are automatic recoveries of lost agents or mechanism to conserve
resources and to use redundancies. As it has been already mentioned, an
Agent state can be restored or restarted, or in other cases, it can be waiting
for another agent due to agent failure or network outage.

• Scalability. Several actions have been adopted to design and maintain a
scalable Cougar architecture. By encouraging encapsulation, data hiding, and
fine grained information management, the information passed between
Agents is limited to a bare minimum. By establishing peer-to-peer inter-Agent
communications, exponential growth in the interdependencies and
interactions among different agents is avoided.

2.5.3.9 Top-Level Information Flow Concepts
Giving a general view, a Cougaar society is started at some point by hand or by an
automated Application Server process. Nodes can be manually killed or restarted,
while new Nodes can join the society dynamically. Agents belonging to these Nodes
start to interact with one another, databases, legacy systems and sensors to fill their
Agent with Assets. Due many stimuli (real-world data from databases or sensors)
Cougaar expects to be continually processing, continually trying to find a better
solution to the given problem and continually reacting to changes in resources, in
requirements and in events monitored from execution.

Tasks are decomposed (by Expansion) and assigned (by Allocation) to other
processing units, either in the same Agent or in another Agent. Each task, then,
creates a “channel” for information flowing through the society for requirements
passing down, and responses flowing back up. At each point, the execution of the
planned requirements is monitored, and replanning may occur if significant
discrepancy is detected between the planned operations and the observed ones.
However, through this flow of information up and down processing chain, there are
many negotiations among different Plugins and Agents to perform a more global
optimization over a larger space. By changing task allocation and task preference, an
Agent can search for an optimal solution between Agents, or manage relationships
with multiple providers to optimally satisfy aggregate requirements.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 37 Version 3

A Cougaar application has two equally-important levels of communication present
and active at any given time:

• Agent-Agent, where agents communicate with each other as peers, hiding
the internal business logic and allowing loosely-coupled, asynchronous and
widely distributed problem solving, perhaps with Agents located with their
supporting external systems (data sources, humans, etc). Relationships
between agents need to be unique, time-phased and dynamic. At the same
time, different roles like superior/subordinate or customer/provider are shown.

• Plugin-Plugin, where components communicate with each other through the
Agent’s Blackboard using tightly-coupled, transactionally-protected
interactions. Plugins are often vastly different from each other, based on the
task performed by each one.

At the same time, Cougaar includes support for distributed agent naming services.
These naming services are used by the Cougaar message transport to route
message over multiple network protocols to mobile agents. Application developers
can also use the naming services to dynamically discover agents at runtime.

Following, the five different types of distributed naming capabilities that have been
identified are presented:

• “Name Generation” constructs a globally unique agent name.
• The “White Pages” is a table that maps names to network addresses (e.g.

DNS).
• The “Yellow Pages” is an attribute-based directory (e.g. a categorized

phone book).
• “Local Discovery” uses LAN-based IP multicast to locate nearby agents.
• “Peer-to-Peer Search” allows an agent to search adjacent agents for

resources.

2.6 ADVANTAGES AND DISADVANTAGES (JADE VS AGLETS &
COUGAAR)

Discussing general advantages and disadvantages of Jade versus Aglets and
Cougaar, it can be concluded that Jade is the best technology to be used.

Parameter Best technology Reason
Developer tools Jade Available easy monitoring and

debugging tools
Large-scale design Cougaar Best suited to developers that

want to customize the agent
framework’s core services or
create complex, large-scale,
robust or highly secure agent-
based applications

Messaging Jade Communication messages
formatted in ACL or XML.
Pluggable transport protocols
include RMI, IIOP and HTTP

Mobility Aglets Enhance Agents mobility
Resources available Jade Updated and easier to find

support
Security Jade It is built as a plug-in
Simplicity Jade Best suited from the developers’

point of view

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 38 Version 3

Share information between
different agents problem

Cougaar Provides a nice solution for this
problem

Support and
Documentation

Jade Active and updated

Updated Jade Active support and forum
community to report bugs

Table 2 Best technology selected by parameter

2.6.1 Jade advantages

• Messaging: In Jade agent platform, inter-agent communication messages
are formatted in ACL or XML, and pluggable transport protocols include RMI,
IIOP and HTTP. Java utility classes simplify the construction and handling of
FIPA-compliant ACL messages. They are the most extended and ideal for
low-volume agent interactions that require cross-platform interoperability. On
the other hand, Aglets is MASIF compliant and Cougaar is not standard
compliant.

• Updated: Talking about updated documentation, active support and forum
community to report bugs, it is important to mention that Jade takes a great
advantage versus the others.

• Simplicity: Jade is the best suited from the developers’ point of view, thanks
of its simplicity design.

• Developer tools: Available easy monitoring and debugging tools.
• Support and Documentation: Active and updated.
• Resources available (libraries, APIs, code...): updated and easier to find

support than the others.
• Security: In Jade it is built as a plug-in. It provides a security model based on

principals, resources and permissions, which enables authentication and
authorization of both agents and the owners.

2.6.2 Jade disadvantages
• Large-scale design: Cougaar is best suited to developers that want to

customize the agent framework’s core services or create complex, large-
scale, robust or highly secure agent-based applications. But perhaps cost-
benefit analysis is not appropriate for other applications.

• Share information between different agents problem: For example,
Cougaar’s blackboard provides a nice solution for this problem, for this
reason it is a good alternative to combine Jade and Cougaar.

• Mobility: it is not a key element in JADE. It focuses on other functionalities
relevant to the development of multi-agent systems. The JADE built-in agent
Mobility Service supports mobility among containers within the same JADE
platform. On the other hand, Aglets is directly design to enhance Agents
mobility.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 39 Version 3

3 SOA LIFE CYCLE

3.1 SOA LIFE CYCLE PROPOSALS

3.1.1 Dan Foody Proposal

Dan Foody has done a life cycle proposal as SOA affects the traditional SDLC
(Software development Lifecycle).

In general terms SDLC has two phases:

• Pre-production: This phase includes the design, development, QA ...
Everything that happens before taking the software production.

• Production: This phase include the deployment, operation…Everything that
happens after taking the software production.

In a SOA lifecycle, Dan Foody proposes a new phase between Pre-production and
Production called Pre-consumption. The new phase is a hybrid of both phases. This
means, part of the build is in production and part is in pre-production. This is
explained below:

• Pre-consumption is looked like part of production phase by service providers
because services are completed and operating in production.

• Pre-consumption is looked like part of pre-production by service consumers

because consumer application is still unbuilt.

3.1.2 Miko Matsumura Proposal

Miko Matsumura proposal states that the SOA lifecycle is different from the traditional
SDLC. The proposal divides the lifecycle into three phases:

• Design time: In this phase a business application is formed putting the
services together.

• Runtime: In this phase start implementing SOA and the business activity is
initiated.

• Change time: In this phase the inevitable alterations and business
requirements changes occur to provide agility.

The particularity of the proposed life cycle is that it begins where the traditional SDLC
ends. The definition of design time covers the assembly of the now published
services into a business application.

In this proposal the policies also have a lifecycle. In this sense the policies have a
design time, runtime and change time, because the constraint model must be
adaptable, flexible for compliance agile SOA promise.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 40 Version 3

3.1.3 IBM Proposal

IBM proposal introduces the role of SOA Quality Management in SOA Service
Lifecycle. The IBM SOA lifecycle has four phases: Model, Assemble, Deploy and
Manage.

• Model: Capture the business design requirements and objectives.
• Assemble: Convert the design business into the definition of business

processes. This phase automates the integration of business process
services for service developers assemble reusable assets that architects
have modelled.

• Deploy: Create the runtime and deployment environment of business
processes. In this phase management functions deploy the services that are
tested and released.

• Manage: Manage and monitor services and business processes defined.

3.1.3.1 SOA Quality Management
IBM SOA Quality Management provides the following key capabilities:

• Enable tools and best practices focused on quality management.
• Eliminate process redundancies for optimize workflows across business

process
• Enable functional and performance testing of business services to ensure

business agility.

The following figure shows the Quality management in the lifecycle and then the role
of quality in each of the phases of lifecycle is explained.

Figure 14 - SOA Quality Management

• Model: The aim is to validate that business requirements have been

modelled and the design is correct.
• Assemble: The aim is to validate that the services created are necessary to

compliance the requirements of business.
• Deploy: In order to ensure the performance and scalability of service.
• Manage: The aim is monitoring and tracking perform service into the

inventory of services.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 41 Version 3

3.2 IBM LIFE CYCLE

The life cycle of IBM SOA Foundation includes the following phases: Model,
Assemble, Deploy and Manage.

Figure 15 - IBM Life Cycle phases

3.2.1 Model
The process of capturing the business design and understanding the requirements
and objectives is known as modelling. This phases aims at gathering requirements,
model and design. The business process specification contains the business
requirements.

The model also incorporates key performance indicators that are important
measurements of the business, such as business metrics.

3.2.2 Assemble
The business design communicates the business objectives to the IT organization,
which assemble the information system to implement the design. This phase is
aimed at turning the business design in defining business processes. If it is
necessary to build new services, these will be built following a service-oriented
development.

Finally, the assembly phase includes applying policies and conditions to control the
way in which the applications operate in the production runtime environment.

3.2.3 Deploy
This phase includes a combination of creating the hosting environment for the
applications and the deployment tasks of those applications. In this sense,
deployment phase resolves the resource dependencies of the application, setting the
operating conditions, capacity requirements and the integrity and access constraints.

3.2.4 Manage
Manage aims at monitoring the services. This phase include tasks, technology and
software necessary to manage and monitor the services deployed in the production
runtime environment.

Monitoring is focused on evaluating and following the performance of the service.
Management system involves routine maintenance; manage applications, application
security and scalability prediction.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 42 Version 3

3.2.5 SOMA Methodology
Service Oriented Modelling and Architecture (SOMA) tries to add key features to the
design and delivery of services. SOMA searches approximate RUP to a service-
oriented programming. The SOMA methodology has four phases: Identification,
Specification, Realization and Deployment. The following figure illustrates the SOMA
methodology.

Figure 16 - SOMA Methodology

3.2.5.1 Identification

This phase aligns the business with information technology. There are no differences
between the process of developing new services and the previously functional
services identification. It must start from a business model where services should
specify its needs in order to be implemented as well as a list of functional
requirements that must be covered. On the other side, if necessary, non-functional
requirements can be added through KPI (Key Performance Indicator). The input
artefacts are the business model and functional requirements, while output artefacts
are the initial service model and operations of services.

Below a brief description of the tasks contained in this phase is explained:

• Identify services from the objectives: The objective is to identify all functional
services that make up the system to later link them to functional requirements
that will be supported. The result of the above is a model of technological
services associated with each functional service. It is necessary to identify the
consumers of services, business process, subprocesses, activities and tasks.
That is how it determines which operations will belong to the service
specification, and the parameters of these operations.

• Develop an analysis of existing assets: The aim is to determine what currently
exists and can be reused.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 43 Version 3

3.2.5.2 Specification

The main objective of this phase is to completely specify SOA design elements from
the architectural point of view. Service specification can be viewed as designing your
own service model. This phase provides an architecture for services so that all
customers, suppliers, specifications and partitioning are specified in terms of its
structure and behaviour. The output artefacts are the service model, service
interfaces and service messages.

Below a brief description of the tasks contained in this phase:

• Structure service architecture: The goal is to build the service model to
construct the interactions.

• Validate and classify services: SOMA provides a tool called Service Litmus
Test, which serves to identify which services should be published and
ensures that services are aligned with a requirement, which in turn promotes
the search and reuse of services.

• Identify service partitions: The goal is to take the service model of each
Functional Service and Technology Services that will identify each of the
partitions according to the following structure: services consumers, business
application services composite, business application services atomic and
infrastructure services.

• Model atomic service providers: Identify the business application services
and atomic services infrastructure.

• Model composite service providers: Identify service providers that will
result from the composition of several services

• Model service consumers: Specifications of the services consumer of
business components.

• Assign the services defined in the service partition: After modelling the
different types of services, they should be put together in the same model and
the relationships between them should be established.

• Consider service policies: This refers to the non functional requirements
that must be covered by the system. This includes details like the
performance, capacity, availability and security.

• Refine service architecture: Collect the work done in the previous task and
finish it completely specifying the structure and behaviour of the architecture
of functional services. This task designs the interaction and the collaboration
between services. Through the relationships between services, consumer
services can be validated.

• Design parameter types, messages and information on the types: This
refers to specify types of design operating parameters, messages and
information.

• Validate the final model of service: It is necessary to ensure that services
can be deployed independently and that they have all the information needed
to implement.

• Model the service assembly: This task aim at completing the development
model of the service with pieces of software.

• Model the service delivery: Model the deployment infrastructure in terms of
both physical and logical nodes.

3.2.5.3 Realization
Up to this phase, it is known what the service does, what it expects and the result of
the invocation. The output artefacts are the class diagram of the services and the
interaction diagram for each service.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 44 Version 3

Below a brief description of the tasks contained in this phase:

• Creating the Model Structure: This is an iterative process that starts
creating the structure of the model. For each component of the service a
package UML will be created. A component of service is the realization of the
specification of it. This include structure, behaviour and polities contract.

• Creating service components: Service components are created from the
service model.

• Refine service components: Once service component is created, it is
refined and deepen, following the guidelines.

• Creating classes:
o A facade class designed to directly carry out the implementation of the

specification. This class is called ServiceNameServiceFacade.
o An implementation class designed to perform the detailed structure of

the service component and its tasks. This class is called
ServiceNameServiceImpl.

o An interface representing an embodiment of the service specification.
The interface is called ServiceNameService.

• Refine the interface: Add to the interface the operations defined in the
service specification.

• Apply pattern design: Firstly, applying the Façade pattern, which needs that
the façade has the same operations to the interface. Second applying the
Interface pattern, which need that the implementation class extends of the
interface.

• Using the specification of asset reuse: The organizations have an internal
repository of patterns, frameworks and best practices. This task links the
asset with the realization of the service.

• Designing the class structure: It conducts a class model for each of the
identified services.

• Designing the behaviour of classes: It conducts the interaction diagrams
between the classes that make up each service.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 45 Version 3

4 CONCLUSIONS

Once the analysis of the different architectures have been carried out, it has been
decided that the Service Oriented Architecture adapts better to the technical goal
REMOTE project pretends. As the project is not so based in the implementation of
network systems or in hardware development, the best choice has been SoA due to
its better adaptation to the needed characteristics of the project related with the
Ambient Intelligence.

As SoA supports the usage of multi-agents, several options have been contemplated.
Taking into account the advantages and disadvantages of every option, as well as
the comparison between them, finally the agent architecture JADE was selected.

Regarding the several lifecycles that can be used and have been analyzed within the
SoA architecture, the final one to be use would be the IBM proposal. A more
exhaustive study has been done in order to justify its usage within the project. Due to
the IBM lifecycle the methodology linked to it is the SOMA Methodology that will help
in the modeling and development of the REMOTE’s final architecture.
The definition and follow of the different phases of this methodology, would result in
the final REMOTE platform services.

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 46 Version 3

REFERENCES

[1] “Service-Oriented Architecture: Concepts, Technology, and Design”, Thomas
Earl, Prentice Hall 2005.

[2] “SOA: Principles of Service Design”, Thomas Earl, Prentice Hall 2007.

[3] P. Maes. Modeling adaptive autonomous agents. In C. G. Langton, editor,
Artificial Life, An Overview, Cambridge, Massachussets, 1995. MIT Press.

[4] [Dan Foody, “What is the SOA Lifecycle?” Progress Software blogosfera
http://blogs.progress.com/soa_infrastructure/2007/11/what-is-the-soa.html, last
access 18/11/2009.

[5] John Ganci, Amit Acharya, Jonathan Adams, Paula Diaz de Eusebio, Gurdeep
Rahi, Diane Strachan, Kanako Utsumi, Noritoshi Washio. IBM RedBooks,“Patterns:
SOA Foundation Service Creation Scenario”, September 2006.

[6] [Ueli Wahli, Lee Ackerman, Alessandro Di Bari, Gregory, Hodgkinson, Anthony
Kesterton, Laura Olson, Bertrand Portier. IBM RedBooks, “Building SOA Solutions
Using the Rational SDP”, April 2007.

[7] Gary McBride, “The Role of SOA Quality Management in SOA Service Lifecycle
Management”.http://www.ibm.com/developerworks/rational/library/mar07/mcbride/,
last access 18/11/2009.

[8] http://www.OSGI.org/OSGI_technology/

[9] Rich Steely, “SOA lifecycle: What are we talking about?”
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1213362,00.html,
last access 18/11/2009.

[10] UPnP-Forum, “UPnP™ Device Architecture 1.1”, 2008.

[11] “WhitePaperJADEEXP”, F. Bellifemine, G. Caire, A. Poggi, G. Rimassa,
September 2003

[12] http://jade.tilab.com

[13] “LEAP user guide”, Giovanni Caire, Federico Pieri, 2003,

[14] “Developing multi-agent systems with JADE”, Wiley, 2007

[15] B. Sommers, “Agents: Not Just for Bond Anymore,” JavaWorld,
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-agents.html April 1997.

[16] B. Venners, “The Architecture of Aglets,” JavaWorld, http://www.javaworld.
com/javaworld/jw-04-1997/jw-04-hood.html, April 1997.

[16] Aglets development group. “Aglets 2.0.2 User’s Manual”. March, 2002.

[18] Rahul Jha and Sridhar Iyer. “Performance Evaluation of Mobile Agents for
E-Commerce Applications”. International Conference on High Performance
Computing (HiPC) , Hyderabad, India, Dec 2001.

http://www.javaworld.com/javaworld/jw-04-1997/jw-04-agents.html
http://www.javaworld/

D.6.1 REMOTE Services Methodology AAL-2008-1-147 - REMOTE Public

January 2010 47 Version 3

[19] Programming and Deploying Java™ Mobile Agents with Aglets, Danny B.
Lange/Mitsuru Oshima, Second Printing, Addison Wesley 1998.

[20] Aglets Open Source web site, http://aglets.sourceforge.net/

[21] Cougaar Open Source web site, http://www.cougaar.org

[22] Aaron Helsinger, Todd Wright. BBN Technologies. “Cougaar: A Robust
Configurable Multi Agent Platform”

[23] Denis Graˇcanin, H. Lally Singh, Michael G. Hinchey, Mohamed Eltoweissy,
Shawn A. Bohner. “A CSP-Based Agent Modeling Framework for the Cougaar
Agent-Based Architecture”. IEEE Computer Society ,2005.

[24] Cougaar architecture document. Technical report, BBN Technologies, 5 July
2004. Version for Cougaar 11.2.

[25] Ronald D. Snyder, Dr. Douglas C. MacKenzie. Mobile Intelligence Corporation.
“Cougaar Agent Communities”. Appears in Proceedings, Open Cougaar 2004, New
York, 2004.

[26] Ronald D. Snyder, Dr. Douglas C. MacKenzie. Mobile Intelligence Corporation.
“Robustness Infrastructure for Multi-Agent Systems”. Appears in Proceedings, Open
Cougaar 2004, New York, 2004.

[27] William J. Tolone,David Wilson, Anita Raja, Wei-Ning Xiang, E. Wray Johnson.
“Applying Cougaar to Integrated Critical Infrastructure Modeling and Simulation”,
2003.

	REVISION HISTORY
	1 ARCHITECTURAL REFERENCE PARAMETERS IN INTELLIGENT AMBIENTS
	1.1 Open Architectures
	1.2 Distributed Architectures
	1.3 Service Oriented Architectures (SoA)
	1.3.1 Web Services
	1.3.2 Semantic Services Oriented Architectures

	2 SERVICE AND MIDDLE WARE ORIENTED ARCHITECTURES
	2.1 SoA Design principles
	2.1.1 Standardized Service Contract
	2.1.2 Service Loose Coupling
	2.1.3 Service Abstraction
	2.1.4 Service Reusability/
	2.1.5 Service Autonomy
	2.1.6 Service Statelessness
	2.1.7 Service Discoverability
	2.1.8 Service Composability

	2.2 Services Registry and Search
	2.3 Services Composition
	2.4 Devices Search
	2.5 Agents architectures
	2.5.1 The JADE Platform
	2.5.1.1 Introduction
	2.5.1.2 JADE architecture
	2.5.1.3 Running JADE Agents on Devices
	2.5.1.4 Message Transport Service
	2.5.1.5 MTP
	2.5.1.6 IMTP
	2.5.1.7 THE LEAP IMTP
	2.5.1.8 JADE execution modes
	2.5.1.9 Admin and Debugging JADE Tools
	2.5.1.10 JADE Conclusions

	2.5.2 AGLETS (Java library for mobile agents)
	2.5.2.1 Introduction
	2.5.2.2 Definition
	2.5.2.3 AGLET model structure
	2.5.2.4 AGLETS workbench
	2.5.2.5 Decreased Network Load
	2.5.2.6 Itinerary class.
	2.5.2.7 Aglets and their environment
	There are two important levels of communications present at Aglet environment. We are talking about communication between aglets and hosts, and communication between aglets.
	2.5.2.8 Server Objects: Contexts.

	2.5.3 COUGAAR (Cognitive Agent Architecture)
	2.5.3.1 Introduction
	2.5.3.2 COUGAAR architecture
	2.5.3.3 COUGAAR society
	2.5.3.4 COUGAAR Community
	2.5.3.5 COUGAAR Node
	2.5.3.6 Cougaar Agent Internals
	2.5.3.7 Cougaar Blackboard Contents
	2.5.3.8 Top Level Design Principles
	2.5.3.9 Top-Level Information Flow Concepts

	2.6 Advantages and disadvantages (JADE Vs Aglets & Cougaar)
	2.6.1 Jade advantages
	2.6.2 Jade disadvantages

	3 SOA LIFE CYCLE
	3.1 SoA Life Cycle Proposals
	3.1.1 Dan Foody Proposal
	3.1.2 Miko Matsumura Proposal
	3.1.3 IBM Proposal
	3.1.3.1 SOA Quality Management

	3.2 IBM Life Cycle
	3.2.1 Model
	3.2.2 Assemble
	3.2.3 Deploy
	3.2.4 Manage
	3.2.5 SOMA Methodology
	3.2.5.1 Identification
	3.2.5.2 Specification
	3.2.5.3 Realization

	4 CONCLUSIONS

