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1 Introduction

The primary objective of the ALIAS project is to develop a mobile robot platform that is
designed to assist elderly users and people in need of care to continue independent living
with minimal support from carers. The functionalities of the robot platform will include
among other important services, the ability to interact with users, monitor their well being
and provide cognitive assistance to them in day-to-day life.

The system is intended to be used for care at homes or in facilities such as nursing homes
or elderly care homes. In such scenarios the robot is typically expected to interact with
more than one user. Hence it is imperative for the robot to identify the current user cor-
rectly in order to deliver appropriate services and to personalise such services. Rather than
using passwords or other more cumbersome, intrusive means of identification, the ALIAS
robot will be equipped with face and speaker recognition capabilities so that identification
may be performed automatically from distance and with ease and convenience.

Both modes of identification have their particular merits in this context. While generally
giving acceptable levels of performance speaker recognition can be troublesome in the
presence of background, ambient noise coming from the radio, television of other, com-
peting speakers for example, and naturally requires the user to speak. Given the need
for proactive care, face recognition is the most appealing means of identification in this
case. In varying or poor lighting conditions, however, or when the user is out of the field
of view, then identification by speaker recognition might be the only option and thus a
combined identification approach has been adopted for the ALIAS project.

This document outlines the general identification algorithms and related enrollment pro-
cedures that will be employed within the ALIAS project to provide for user identification.
The document also contains a brief overview of speaker diarization which is employed in
combination with speaker recognition in order to handle multiple sound sources. The face
recognition module will be developed by TUM whereas the speaker recognition module
will be developed by EURECOM.
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2 Biometrics

How best to confirm or verify someone’s identity is an age-old problem. There are three
different approaches in the form of something that we know, something that we have and
something that we are: a biometric. Billed as a more efficient, universal, reliable and low-
risk means of identification, biometric technologies have received a great deal of attention
in the last decade.

Each biometric has its advantages and disadvantages, in terms of performance, cost, ac-
ceptability, etc. Among the so-called physical biometrics there are our fingerprints, hand
geometries, retina, iris and faces. Among the more behavioral biometrics there are our
signatures, gait and voices. The choice of biometric depends very much on the appli-
cation, some diverse examples of which include access and border control, electronic
commerce, telephone banking and user profiling for system personalization.

Template
Database

Sensor Preprocessing
Feature
Extraction

Template
Generator

Template
Matcher

Hypothesized
person

Test

Test

Enrollment

Biometric recognition System

Figure 2.1: Biometric recognition system

Figure 2.1 illustrates the block diagram of a typical biometric recognition system. As seen
in the figure, there are in general, at least two identifiable modules in a typical biometric
system: that of learning or enrollment and that of comparison or recognition: identifi-
cation (one-to-many) or verification (one-to-one). Optionally there is a third adaptation
module which aims, for example, to track changes in a person’s biometric over time.

During learning the biometric characteristics or traits are captured through an appropriate
sensor. Captured signals are rarely stored in raw form and are, instead, usually trans-
formed or parametrized to extract features, a compressed representation better suited to
statistical pattern recognition. In doing so, we aim to remove redundant and/or noisy in-
formation and keep only that which is useful for biometric recognition. Features are first
used to learn a statistical model, otherwise known as a template, which is a compact rep-
resentation of the signals which facilitates recognition and reduces the quantity of data or
features that must be stored by the system.
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During recognition the biometric characteristics are captured again and are compared to
the stored template(s). If they are sufficiently similar then they are deemed to come from
the same person and a match is declared. If they are sufficiently dissimilar then a false
match is declared. It is important that the sensor used during recognition should be as
close a match as possible to that used for learning. Any differences between the sensors
used for learning and recognition will result in differences in the statistical properties
of the extracted features. Some form of compensation or normalization is then usually
required to limit the subsequent degradation in recognition accuracies. What follows the
generic ‘recognition’ stage differs according to the whether the biometric system performs
identification or verification.

In identification mode the system aims to discover a person’s identity, i.e. the system
is required to answer the question, ‘who am I?’ In this mode the system compares the
biometric signal with different models contained in its database (a 1-to-n problem). In
general, when we refer to identification, we suppose that the problem is closed-set, i.e.
that every potential user has a corresponding template in the database. Open set refers to
the situation which includes previously unseen persons and is a potentially more difficult
problem.

In verification mode there is a notion of a claimed identity and the system is required to
answer the question, ‘Am I who I say I am?’ The user claims an identity and the system
has to verify whether or not the identity of the individual is the same as that claimed. For
verification, it is only necessary to compare the biometric signal with a single template in
the database (a 1-to-1 problem). Here we generally suppose that the problem is open-set,
in that not all potential users have a corresponding template in the database.

Identification and verification are two different problems. Identification can be a daunting
task when the database contains thousands or even millions of identities, especially when
the system is subject to real-time constraints. When a system functions in verification
mode there are two types of error. It can either (i) reject a legitimate user, which we refer
to as a false rejection, or (ii) it can accept an impostor, which we refer to as a false accep-
tation. The first cause of error stems from the inevitable variations in the environment or
context in which they are used. In face recognition, for example, there is high potential for
variability (e.g. lighting, pose and expression) and as a result it is possible to confuse two
different people as the same person and equally two biometric samples from one person
as belonging to two different people. This latter case is an example of a false rejection
(FR). If the FR rate becomes too high then the system becomes unusable. To alleviate
these problems the authentication protocol may be modified to make the matching pro-
cess less stringent. This invariably leads to an increase in the false acceptance (FA) rate,
the second cause of error. Together the FR and FA rates reflect the inevitable trade off
between usability and security.

In the following chapters, we review the two biometric modes that are relevant to the
ALIAS project. They are face and speaker recognition.
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3 User Identification by Face

In recent years the detection as well as the recognition of persons have gained more and
more attention in the image-processing domain. Several reasons are accountable for this
fact: the processing power of computers has increased, cameras have become cheaper,
sophisticated algorithms have been developed, large data sets have become available, etc.
This chapter describes some well-known approaches as well as the algorithms used for
the ALIAS system.

3.1 Basic Concepts

In general up to now, two different approaches in the image-processing domain for recog-
nizing persons are available: via face or via gait. Face identification and recognition can
be used for admission control, as the storage of digital image data on passports is a first
indicator of heading into that direction. Besides, automatic face identification and recog-
nition can be used for the surveillance of public spaces as well as search for criminals. For
the human-machine interaction point of view, the knowledge of the identity of the inter-
action partner can be used for the adaptation towards specified personal profiles as well as
authentication for access to the computer. Especially the user identification and recogni-
tion basing on image-processing can be easily integrated in common media devices, due
to the fact that most of the systems are equipped with a camera (e.g. notebooks, mobile
phones).

As for the human-machine interaction point of view, in a robotic environment, the image-
based person identification can also be used for the adaptation of the robotic platform as
well as for authentication of the user. By knowing the identity of the user, the robot can
for example present user-specific data (e.g. images) or the robot can adapt its behavior to
the specific needs and abilities of the user. Furthermore, it is possible to provide certain
applications only for specific users. For example, it would be possible that the robot can
only be controlled by a user from a whitelist.

3.1.1 Task

In this chapter, we concentrate on the image-based identification of persons using face
recognition. The ALIAS face recognition module performs two tasks, face detection and
face identification. Before we delve into details of these separate tasks, we want to address
some major parameters that can cause problems. There are several determining factors for
the performance of a face recognition system. The main parameters are the illumination
conditions, the head pose and the styling, occlusions and mimics. Illumination plays a
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major role in face identification. The best condition would be constant lighting. In this
case, no special algorithms to reduce the influence of lighting are required. In other cases,
performance of a face identification system can degrade heavily due to changing lighting
conditions. The biggest problems occur due to shadows and under- or overexposure.
Especially in a robotic environment, constant illumination conditions cannot be taken for
granted. A robot in a home scenario will cause many different conditions. For example,
the robot will move into different rooms with different conditions. Furthermore, the robot
may be directed towards a window or a source of light, or, in the other case, may look
in the opposite direction. In order to cope with these changing conditions, the influence
of other factors should be kept at a minimum. The second major factor is the head pose.
The geometric orientation of the face that is to be identified influences the performance of
the identification system. When the face is always recorded from a frontal point of view,
the task is kept simple. For ALIAS, we can solve this problem by providing a module
that is only activated when a person is directly in front of the robot and looking at the
camera. Head styling is another important factor for face identification. Cosmetics, hair
style, facial hair and glasses all influence face identification process. Occlusions can also
be ruled out for the ALIAS system, as it is assumed that the ALIAS face identification
module is only activated when a person is directly in front of the robot.

3.1.2 Face Recognition

The area of face recognition covers several different tasks, which we want to describe in
more detail in this chapter. In order to be able to identify a face, it has first to be detected
in the current image. Afterwards, the area in the image containing the face can be passed
to the face identification or face verification module. For the task of face identification,
the system has several hypotheses for the identity of a face and has to decide for one of
them. A different task is face verification. In face verification, for a given face, the system
has only two hypotheses. It must decide if a face is of a given identity or not.

Face Detection

Face detection is the task of determining if and where in an image faces are located. In
the face detection step, sensor data are the input. The output are coordinates of regions
containing faces. A common description of such a region is a bounding box, with its
coordinates x ∈ [xl, xr] and y ∈ [yb, yt], where xl and xr are the left and right borders, re-
spectively, and yb and yt are the bottom and top borders of the bounding box, respectively.
Typically, a face detection system does not provide scaling and rotation of the detected
face.
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Face Identification

The task of face identification can be described as follows. An image segment with a
detected face is provided to the system. The system has a database of known faces and
must decide for one of these, whichever is the most similar to the face in the given image
segment. This can be done by calculating a similarity (or distance) measure between the
unknown face and all of the faces in the database. The system then decides for the face in
the database with the largest similarity (or smallest distance). Hence, face identification
is a 1 : n comparison.

Face Verification

Face verification (also known as face authentication) covers the scenario when a person
claims to have a certain identity and the system has to decide if this is true. The system
decides if the person has the claimed identity or if not. Thus, this is a 1:1 comparison.
Face verification does also make use of a database for all known faces. This database is
constructed in the training phase. Furthermore, an appropriate threshold for a similarity
or distance measure has to be found.

3.2 General Approaches

For the task of identifying a person by its face seen from a frontal direction under good
illumination conditions, several different approaches have been developed over the years,
all of which show good results. In the next sections, we describe different approaches to
the tasks of face detection and face identification.

3.2.1 Face Detection

Face detection is the task of finding regions in an image that contain faces. The most com-
mon approaches are the approach of Viola and Jones [58] using adaptive boosting [26] and
Haar like features and the approach of Rowley [51] which uses neural networks [8] to find
faces. These two detection algorithms will be described in the following two sections. An
overview over other approaches can be found in [63]. Apart from the specific approaches
for face detection, more general approaches like foreground and background segmentation
by background subtraction, detection of specific colors, detection of movement also play
a role. These approaches are very often combined with the approaches described here. A
description of these approaches can be found in standard references like [34, 3, 52].

9



ALIAS D3.3

Detection with Neural Networks

The approach of detecting faces with neural networks [8] can find frontal faces in gray
scale images. The algorithm applies a sliding window technique to classify the selected
region with regard to a two class problem: presence of a face or absence of a face. A
sliding window is a region with a defined size, which is stepwise placed on the input
image to crop certain regions. These selected regions are afterwards presented to a clas-
sifier. However, to accomplished the detection of faces varying in size, the input image is
downscaled by applying a low-pass filter operation followed by an undersampling step to
decrease the size of the input image stepwise.

The classification of the selected regions is performed via a multi-layer perceptron [8].
The approach of [51] bases on a input layer of 20x20 pixel region, a hidden layer, and an
output layer, which represents the presence or absence of a face. Rowley [51] applied the
following structure for the neural network, which proved itself as suitable for detecting
faces. Three different forms of receptive fields are used, each receptive field is connected
with one neuron of the hidden layer. The three receptive field forms were designed ac-
cording to the task to represent structures, which can be used to characterize a face. The
structure of the receptive fields and their three different forms can be seen in Figure 3.1.
One form of the hidden unit consists of 4 10x10 pixel subregions, the second receptive
field form is composed of 16 5x5 pixel subregions, and the third form comprises 6 over-
lapping 20x5 pixel horizontal stripes of pixels. The three different receptive field forms
were designed to represent specific face features. The idea behind the horizontal stripes
is to emulate the horizontal eyes region as well as the mouth region. The hidden layers
connected to the receptive fields having a square form should detect the following face
features: nose, corners of the mouth, and eyes.

Figure 3.1: Neural Network approach presented in [51].

In general, to train a neural network classifier to the task of detecting a face in an image,
a lot of training data is required to accomplish a good classification performance. For the
training, the position of the eyes, the tip of the nose, the corners and the center of the
mouth are labelled by hand as input for the normalization of the image data with regard to
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scale, orientation, and position. From each original face of the training set additional 15
training images are generated by additional rotation, translation, scaling, and mirroring.
A further preprocessing step of the training phase is the lighting correction and histogram
equalization of the 20x20 pixel subregion, which are handed over to the neural network
for training purposes. The instances for the negative training examples are composed of
random extracts of images comprising no faces.

Detection with Viola-Jones Algorithm

The reason why the approach of P. Viola and M. Jones [58, 59] became so popular in the
image-processing community to detect faces is its effective and fast processing and the
achievement of high detection rates. The fast processing speed of this approach is based
on three facts: first, the applied Haar-like features computed on a so-called integral image,
second, adaptive boosting (adaBoost) [26], and third, the cascade structure of classifiers
(within increasing complexity).

The features used in the cascade classification structure are so-called Haar-like features,
because they have resemblance with Haar-Wavelets basing on the theory of orthogonal
functions by A. Haar [30]. The computation of the Haar-like features is conducted by
relying on the integral image described below. The reason for applying features and not
directly pixels in that case is due to the following considerations: first, a higher processing
speed can be achieved by applying features, second, features represent semantic informa-
tion, which can be easier extracted from a finite training set.

The integral image ii can be used to compute the sum of an arbitrary rectangular image
subregion fast and efficiently. The ii contains the sum of all pixels from the left upper
corner to the current pixel position (x, y) of the input image I , thus the ii is given by:

ii(x, y) =
x∑
i=0

y∑
j=0

I(i, j). (3.1)

For enhancing the efficiency of the computations of the ii, the neighboring relation can
be exploited. The summation process is split up into two steps: summation column-by-
column and summation line-by-line, thus an efficient way of computing the ii can be
found. The cumulative line sum is given by:

s(x, y) =
x∑
i=0

I(i, y), (3.2)

which is followed by cumulative column sum:

ii(x, y) =

y∑
j=0

s(x, j). (3.3)
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The summation of the cumulative sums can be expressed in an iterative way, thus resulting
in an efficient implementation:

s(x+ 1, y) = s(x, y) + I(x+ 1, y), (3.4)
ii(x, y + 1) = ii(x, y) + s(x, y + 1). (3.5)

Having the efficient computation for an ii at hand, the sum of pixels within an arbitrary
image rectangular can be determined in the following way:

S = ii(x4, y4) + ii(x1, y1)− ii(x2, y2)− ii(x3, y3), (3.6)

where p(x1, y1) is the upper left corner of the image rectangular, p(x2, y2) is the upper
right corner, p(x3, y3) the lower left corner, and p(x4, y4) is the lower right corner. The
computation of the pixel sum of the rectangular S is shown in the Figure 3.2 depicted
below.
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Figure 3.2: Computation of the pixel sum in the rectangular S.

The reason for setting up this efficient method is due to the computation of the Haar-like
features. As mentioned above these so-called Haar-like features have resemblance with
the Haar Wavelets, and they are designed the following way: Within a defined rectangular
region of an input image I , the sum between different subregions is computed. Subre-
gions indicated by a white color are weighted in a positive way, whereas the subregions
indicated with a black color are weight in a negative way. In general, the Haar-like fea-
tures can vary in size and position and are composed of two, three, or four rectangular
subregions (see Figure 3.3 for some examples). The base resolution for the applied face
detector is 24x24, thus over 180.000 rectangular features are thinkable.

Figure 3.3: Examples of Haar-like features.

The result of the computation of the Haar-like features represent certain characteristic of
the input image: edges, texture changes, borders between light and dark image regions.
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The value of the applied Haar-like feature f is given by the sum of the positive and
negative weighted image subregions.

As mentioned above, adaBoost is applied to set up a cascade of weak classifiers for de-
tecting the human face, therefore, the negative and positive training examples are used to
determine an optimal classification threshold ensuring a minimal number of misclassifi-
cations.

For a Haar-like feature i and a corresponding threshold value θi a weak classifier hi can
determine in a defined image region x if either a face is contained or not. The classifier
can be interpreted in a geometric way, building a hyperplane separating the two classes.
The parity pi is applied to determine the location of the two classes with regard to the
hyperplane. Thus, the weak classifier is given by:

hi(x)

{
1 if pifi(x) < piθi
0 else. (3.7)

As mentioned above adaBoost is applied for detecting a face. The idea behind adaBoost
is to combine several T weak classifiers ht(x) in a cascade resulting in one strong classi-
fier H(x).

H(x)

{
1 if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 else.
(3.8)

In the following the adaBoost algorithm for classifier learning is given (see Algorithm 1),
in each round one feature is selected from 180.000 possible candidates.

A detector, trained with Algorithm 1, already provides a suitable detection rate, however,
the computational speed is related in a linear way to the selected features. For increasing
the processing speed, a cascade of classifiers can be set up combining several classifiers
Hi(x).

The approach of constructing the cascade of classifiers is the following: In the beginning
boosted classifiers are used, which are smaller and thus having a more effective processing
speed. These classifiers are designed to have a high detection rate and reject many sub-
regions comprising no face. These simple classifiers are followed by complex classifiers
achieving low false positive rates.

The general idea behind the cascade approach is the following: The simple classifiers
in the beginning should select all subregion having a face and discard many subregions
having no face. Thus, many subregions having no faces should be discarded in the early
stages of the processing. In the following cascade steps, the classifiers are more complex
to reduce the false positive rate. The increase in the processing speed is due to the fact, that
many subregions comprising no faces are discarded by the simple classifiers, which have
good processing speed, thus the complex classifiers have to process much less subregions.
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Algorithm 1 AdaBoost algorithm for face detection from [58].
The following steps have to be performed:

• Given example images (x1, y1), . . . , (xn, yn) where yi = 0, 1 describe negative
or positive examples, respectively.

• Initialize weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m and l are the
number of negatives and positives respectively.

• For t = 1, . . . , T :

1. Normalize the weights,
wt,i ← wt,iPn

j=1 wt,j

such that wt is a probability distribution.

2. For each feature j, train a classifier hj which is restricted to using a single
feature. The error is evaluated with respect to wt, εj =

∑
iwi |hj(xi)− yi|.

3. Choose the classifier ht, with the lowest error εt.

4. Update the weights:
wt+1,i = wt,iβ

1−ei
t

where, ei = 0 if example xi is classified correctly, ei = 1 otherwise, and
βt = εt

1−εt .

• The final strong classifier is:

H(x)

{
1 if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 else.

where αt = log 1
βt

.

The classification cascade composed of the classifiers H1(x), . . . , HT (x) is depicted in
Figure 3.4 shown below.

3.2.2 Face Recognition

In the image-processing community several approaches were proposed to fulfill the task
of face recognition, however, the differences between recognition approaches and feature
extraction approaches are not sharply defined. Often a specific feature extraction method
is coupled with a classical classification method (e.g. distance classification) forming face
recognition approaches. Popular approaches for face recognition are eigenfaces, pseudo
two-dimensional Hidden Markov Models (p2dhmm), Active Appearance Models or Elas-
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Figure 3.4: Cascade of classifiers.

tic Bunch Graph Matching, for example. A description of these and other approaches can
be found in [65]. In the following two subsections, only the eigenfaces approach and the
p2dhmm approach will be delineated.

Eigenfaces

The so-called eigenfaces [54, 56, 57] is a well-known approach in the image-processing
community. A crucial processing step in the eigenfaces approach relies on the principal
component analysis (PCA) [8].

Starting point for the face recognition via eigenfaces are face images I(x, y), which are
gray scale and have the same size NxN (it is assumed that the images have a quadratic
form, however, it is not a neccessity). The idea behind is that face images can be rep-
resented in a small dimensional subspace of the original image space, which is given by
NxN , because the face images have similarities in their entire configuration and thus are
not randomly distributed in the entire image space.

The face images I(x, y) are represented via column vectors having the length ofN2. From
these column vectors ~x1, . . . , ~xM an average vector is computed the following way:

~x =
1

M

M∑
i=1

~xi. (3.9)

Having the average vector, a matrixA is computed consisting of the input data ~x1, . . . , ~xM
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subtracted by the average vector ~x.

A = [~x1 − ~x, . . . , ~xM − ~x]. (3.10)

Depending on the matrix A the covariance matrix C is determined:

C =
1

M − 1
AAT . (3.11)

The eigenvectors ~e of the covariance matrix C hold the following equation:

C~e = λ~e. (3.12)

The matrix C is real-valued and symmetric, thus the eigenvectors of C are orthogonal. If
the eigenvectors are converted back into two-dimensional images, it can be seen that the
eigenvectors represent characteristic face structure. This is the reason for naming these
features eigenfaces.

A subset k of the eigenvectors Ek(~e1, . . . , ~ek) and the average face image ~x is selected to
represent faces by projecting the face image ~x to a subspace of dimensionality k by se-
lecting k eigenvectors resulting in a vector ~w. The representation of a face ~x is conducted
the following way:

~w = ETk (~x− ~x). (3.13)

As can be seen in Equation (3.13), the amount of selected eigenvectors is variable. There-
fore, the quality of the representation ~w depends on the selected amount of eigenvectors.
The eigenvectors ei are selected according to their eigenvalue λi, which are sorted with
regard to their value. The lower bound for the quality q is related to the k first selected
eigenvalues the following way:

q(k) =

∑k
i=1 λi∑N
j=1 λj

, (3.14)

where q is in the interval [0, . . . , 1], whereas the values close to 1 represent higher quality.
The backprojection ~xb is given by:

~xb = ~x+ Ek ~w. (3.15)

The classification in the eigenfaces approach is based on distance measure determin-
ing the difference of the projection ~wy of an unknown input image ~y to the projections
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~wdb1 , . . . , ~wdbN of all images ~xdb1 , . . . , ~xdbN stored in the testing data base. The distance
can be measured for instance via the Euclidean distance

deuc(~wy, ~wDBi
) =

√
(~wy − ~wDBi

)T (~wy − ~wDBi
), (3.16)

or the Mahalanobis distance

dmah(~wy, ~wDBi
) =

√
(~wy − ~wDBi

)TC−1(~wy − ~wDBi
). (3.17)

The assignment of the unknown image ~y to one of the faces i of the data base is conducted
by finding the database representative ~wDBi

minimizing the dmeasure(~y, ~wDBi
) given by:

î = argmin
i

dmeasure(~y, ~wDBi
). (3.18)

Pseudo Two-Dimensional Hidden Markov Models

Hidden Markov Models are stochastic finite automatons, where a first order Markov chain
Xt generates observations Yt. These two processes are random, where the underlying
generating process of the Markov chain is hidden, thus the name Hidden Markov Model.
However, the name hidden refers only to the actual states of the Markov chain and not to
the parameter set θ describing the Hidden Markov Model itself.

The area of application of Hidden Markov Models covers a wide range, most commonly
they are used for speech recognition. Other applications are hand writing as well as ges-
ture recognition and face recognition. In general, Hidden Markov Models are a special
case of Dynamic Bayesian Networks, where the topology of the underlying graph con-
necting the different nodes of the random processes can vary. Hidden Markov Models for
face recognition have itself a special structure known as pseudo two-dimensional Hidden
Markov Models (p2dhmm). This structure results in a topological order improving the
representation of two dimensional data structures like images.

Before the p2dhmm is introduced, some important characteristics about Hidden Markov
Models are given, easing the understanding of p2dhmms.

The underlying hidden Markov chain Xt is in general of discrete nature comprising K
possible states, whereas the observation sequence can be either discrete comprising L
states or continuous Yt ∈ RL. The parameters θ of the Hidden Markov Model can be
subdivided into three different kinds:

• The initial state distribution π(i) = P (X1 = i) given the probability that the hidden
Markov chain starts with state i.
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• The transition model A(i, j) = P (Xt+1 = j|Xt = i), where A is a matrix, where
each row sums to one. Often, the matrix A is sparse, or the structure gives a left-
right transition matrix, meaning that states can only transit into themselves or higher
numbered states.

• The observation model characterizes the relationship between the hidden state of
the Markov chain Xt and the actual observation Yt. Depending on the nature of the
observation (discrete or continuous), the observation model is defined via a matrix
(discrete case) or via a Gaussian or Mixture of Gaussians (continuous case).

– Discrete case:
B(i, k) = P (Yt = k|Xt = i). (3.19)

– Gaussian:
P (Yt = y|Xt = i) = N (y;µi,Σi), (3.20)

where N (y;µi,Σi) = 1

(2π)L/2|Σ|
1
2

exp(−1
2
(y − µ)′Σ−1(y − µ))

– Mixture of Gaussians:

P (Yt = y|Xt = i) =
M∑
m=1

P (Mt = m|Xt = i)N (y;µm,i,Σm,i). (3.21)

The classification applying Hidden Markov Models tries to find the the parameter set
θ∗ which maximizes the probability p(YT |θ∗) for a given observation sequence YT =
(y1, . . . , yT ).

As mentioned above p2dhmms have a certain topological order, which is more suited to
emulate two dimensional signals (e.g. images). This topological order can be seen in
Figure 3.5(a).

Start End

(a) p2dhmm: Compact representation.

Start EndMarker Marker Marker Marker

(b) p2dhmm: Detailed representation.

Figure 3.5: Overview over p2dhmm representations.

The general idea behind this structure is the following: The columns of the two-dimensional
input signal (here: the gray scale image) are mapped to left-right transition Hidden Markov
Models. These Hidden Markov Models of the image columns are afterwards connected
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building themselves a right-left transition Hidden Markov Model. The connection of the
columns is accomplished by connecting the last hidden state of column cn−1 to a so-called
marker state of column cn. The integration of the marker states into the p2dhmm can be
seen in Figure 3.5(b). The purpose of the marker state is to ensure that the signal is repre-
sented in the two-dimensional form, because only when the marker state of column cn−1

has a certain value a transition to the first hidden state of column cn takes place. This mea-
sure ensures, that only entire image columns are modeled by the column Hidden Markov
Models.

For p2dhmms the general tools the Expectation Maximization Algorithm [6] for learning
as well as the Viterbi Algorithm [61] for finding the most probable sequence of hidden
states can be applied. One important fact that should be mentioned here briefly is that the
observations for the Hidden Markov Models are not directly the pixel values of the gray
scale images, but features computed on them or on blocks of pixels.

3.3 ALIAS Face Identification System

In this section, we present the approaches we use for the ALIAS face identification mod-
ule. For face detection, the Viola-Jones Algorithm as described in Section 3.2.1 is used.
For face identification, we use an eigenface approach, see Section 3.2.2.

3.3.1 Algorithm

Our approach uses the Viola-Jones Algorithm for face detection and eigenfaces for face
identification. The system fetches an image from the camera and first of all transforms
the image to greyscale, since the Eigenface approach is done on greyscale images. After-
wards, the face detection is started. This is done with the Haar cascade classifier (Viola-
Jones Algorithm). Only the hypothesis with the highest probability is returned, in the
form of a rectangle as a bounding box of the face. The image segment containing the face
is then normalized in contrast and brightness, to minimize the influence of the lighting
conditions. Then, the face identification is started. For this purpose, the image segment
is projected onto the PCA subspace. The identity is then determined by classifying the
unknown face with a nearest neighbor classifier. In addition to the identity, a so-called
confidence cy is calculated. This is done in the following way, using the Euclidean dis-
tance from Equation (3.16):

cy = 1−

√
deuc(~wy , ~wDBi

)

ntrain∗K

255
, (3.22)

whereby ntrain is the number of training images and K is the number of eigenfaces. The
confidence c lies always in the interval between 0 and 1. In order to make the recognition
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results more robust, N images are taken and classified. The final decision is then made
on the average confidence c̄,

c̄ =
1

N

N∑
n=1

cy (3.23)

over all N images. The average confidence c̄ is calculated for every identity in the
database and the system then decides for the identity with the maximum c̄ . To be able to
classify an unknown face, a data base of known faces is needed. Therefore, in a training
phase, training images are recorded, whereby the identity of the user is known.

3.3.2 Implementation

The ALIAS prototype makes use of an openCV (version 2.1) implementation.

Training phase

The module can be started in a training mode. In this mode, the system needs to know the
identity of the user it wants to learn. The system also needs to be served with the length
of the training phase. The user should be in front of the camera. Then, for the length of
the desired training phase, the camera takes pictures and performs face detection. The
image segments of the detected faces are preprocessed, stored and added to the face data
base. If the person was previously unknown, the name of the new person (as provided to
the module) is also added to the list of known persons. The training mode can be started
several times to add pictures of different persons or of the same person in order to reduce
the influence of the recording conditions.

Recognition Phase

In the recognition phase, the described module can be used to identify the person that is
in front of the robot. When the module is started it needs the length of a time interval
as a parameter, similar to the training phase. For the length of the time interval, it will
then take pictures, detect the faces, and assign one of the identities of its database to the
unknown faces. When the time interval ends, a decision for the identity of the unknown
person is made by deciding for the identity with the largest average confidence over all
images recorded during this interval. The result of the identification process can then be
given to the dialog manager, for example. Currently, the results are written in a text file.

There are also several other functions, for example to show all users that are in the
database or to delete a specific user.
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3.3.3 Restrictions and open issues

For the ALIAS face identification system, we make several recistrictions and assumptions
to simplify the recognition procedure and to improve the recognition results. The ALIAS
face identification module will be triggered on demand. This means, that it is assumed
that the module is only started when a person is in front of the camera and that only one
person is there. This simplifies the task as the system can assume to have a frontal image
to work with. Furthermore, the system assumes that there are no occlusions. Additionally,
the system has to work with a limited set of persons. The recognition accuracy increases
with decreasing number of possible persons, therefore a small number of possible persons
is beneficial for the system. There are several specific problems for the ALIAS face iden-
tification module. For example, as the robot can move around, it will always encounter
different illumination and background conditions. This can lead to difficulties in the iden-
tification process, as the recognition results are highly dependant on the conditions during
the training phase. In order to minimize the effect of changing illumination and back-
ground conditions, there is always the possibility to retrain the system by adding new
images of an already known person to the database. The system can then, for example, be
trained several times, each time with different conditions.

With the current version of the module, the results and feedback of the module are written
in a text file. In order to be able to communicate with the dialog manager, an interface
needs to be defined. Furthermore, the current version is just a prototype that runs with
a webcam. The integration on the robotic platform with the connection to the omnicam
needs to be done.
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4 User Identification by Speech

Speech signals not only carry the message to be communicated but also paralinguistic
information about a speaker’s identity. Each speaker has a distinct voice signature char-
acterized by pitch and timbre, speaking style, accent, prosody and speaking rate. There
are also subtle differences in the language usage and frequently used words which can
also help in distinguishing between speakers to a certain extent.

Automatic speaker recognition (ASR) systems attempt to identify a person based on
his/her input speech. Such systems have widespread appeal in several real life scenar-
ios. In applications such as secure telephone banking, speech is the only biometric mode
available to authenticate a user. Speaker recognition is a useful tool in forensic analysis to
establish the identity of speakers in general surveillance or suspicious conversations. In
tasks such as multimedia indexing, for example, automatic annotation of meeting room
discussions or broadcast news, associating segments of speech to a particular speaker is
an important sub-task. Speaker recognition is also an essential step towards personal-
izing spoken dialogue systems in order to make man-machine interactions as natural as
possible. This latter example is the most relevant to the use of ASR within the ALIAS
project.

One particular advantage in using speech for identifying users of the ALIAS Robot is the
ease with which the signal can be obtained. Speech signals are readily captured in almost
any environment using standard microphones and recording equipment and do not depend
of the orientation of a camera or relative position of the subject. It is further independent
of occlusion and inter-session variations in illumination, pose or expression which often
degrade the performance of face recognition systems in similarly uncontrolled contexts.
Speaker recognition, however, is not without its own specific issues related to inter-session
variation. Ambient noise, differences in the linguistic context, a persons state of health
or emotional state all influence performance. The quantity of data is also an important
factor. Whereas face recognition may only require a single image, speech signals are
dynamic, i.e. information is contained within its variation over time. Sufficient data is thus
required for acceptable performance and place certain constraints on viable applications
and contexts relevant to the ALIAS project.

In the following we outline the basic concepts and general approaches to ASR. Since it is
inextricably linked to speaker recognition we further describe related speaker diarization
technology which allows speaker recognition to be deployed in multi-speaker contexts.
Finally we describe the specific ASR system that will be exploited in the ALIAS project.
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4.1 Basic concepts

Depending on the application speaker recognition systems can be either a) text-dependent
or b) text-independent. In text-dependent systems, the utterances to be spoken by the user
for identification are predefined. Such systems are typically used in biometric authentica-
tion applications where the user is cooperative. For instance in secure telephone banking,
the user speaks his password and the system determines whether or not the utterance cor-
responds or matches the template. Since the recognition task is constrained, recognition
performance is typically higher than it is for the text-independent case but places strict
constraints on the dialogue.

In text-independent systems there is no constraint on the spoken text as well as the dura-
tion of the speech and hence the task can be relatively more challenging. Such systems
are typically used in non-pervasive scenarios such as home care systems and identify the
speaker without his/her explicit effort, co-operation or dependence on pre-defined utter-
ances. Text-independent speaker recognition systems are also the norm in media indexing
and forensics. From the ALIAS project perspective, since the Robot is required to recog-
nize the speaker from any utterance directed towards it, the ALIAS speaker recognition
system will be text-independent. This will not, however, prevent text-dependent operation
if this is later deemed necessary.

Depending on the task, speaker recognition systems can be classified as either a) speaker
verification or b) speaker identification systems. In the same way as described for general
biometric systems in Chapter 2, the question asked of a speaker verification system is
simply ‘is the person who they say they are?’, i.e. there is a notion of a claimed identity,
which the system should verify or otherwise. Such systems are essentially binary classi-
fiers which provide a ‘Yes/No’ response and are widely used in biometric authentication
applications.

Speaker identification systems, on the other hand, have to address a slightly more chal-
lenging problem of determining the identity of the speaker from an open or closed set
of speakers. Such systems are multiclass classifiers which, in an open set scenario, also
have to determine whether the input speech is from a non-enrolled person. In the ALIAS
project, the system will function in an identification context where the Robot may be
required to distinguish between more than a single enrolled user. The speaker set is, how-
ever, nonetheless open but with a closed subset including enrolled users, family members
and carers. Occasional visitors and speech from other background sources correspond to
the open subset.

4.2 General Approaches

In the following we outline the various components that are common to almost all speaker
recognition systems and show how they are combined together, potentially with speaker
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diarization, in order to perform identification.

4.2.1 Speech Activity Detection

Speech activity detection (SAD) is an important component in any real-world speech
based application. It aims to segment the input audio stream into speech and non-speech
segments. This is an important functionality from both a computational and performance
point of view since processing the non-speech input is unnecessary and contains no infor-
mation about the speaker identity. By concentrating only on intervals of the audio signal
which contain active speech the resulting speaker models are more discriminative and
lead to improved recognition performance.

SAD is primarily based on the energy content in the signal, zero crossing rates and line
spectral frequencies [46]. These approaches are usually based on thresholding by analyz-
ing the whole utterance before SAD. On the other hand, approaches such as long term
spectral divergence (LTSD) [47] have been successfully used in online detection in real
world situations.

4.2.2 Feature Extraction

As in all statistical speech pattern recognition tasks one theme of active research relates
to the choice of features that give the best discrimination between classes, here speakers.
Speech signals are quasi-stationary in nature and hence features are usually extracted from
short frames of 20-40 msec in duration. The signal is assumed to be stationary in such
short windows (frames) and most state-of-the-art feature extraction techniques are based
on short-term spectral estimates over these frames which are preemphasized to boost the
higher frequencies.

For each frame, the spectrum is further processed through a filter bank analysis followed
by a decorrelation process using cepstral analysis. First and second order derivatives
are typically appended to the cepstral parametrization to capture the correlation between
adjacent frames. Cepstral based parameters that have found widespread usage are Mel
Frequency Cepstral Coefficients (MFCCs) [41] where the frequency scale is warped to
Mel-scale to replicate the logarithmic frequency resolution of human ears and Perceptual
linear prediction prediction coefficients (PLPs) [31] which are inspired by the principles
of human auditory perception. The block diagram representation for these cepstral based
feature extraction methods is shown in Figure 4.1.

Unfortunately features always carry certain channel characteristics which manifests as
convolutional noise. In order to attenuate these effects, which can otherwise lead to non-
negligible degradations in performance, various feature-level normalization approaches
have been investigated. These approaches include cepstral mean subtraction (CMS) [27],
RASTRA filtering [33], feature warping [44] and feature mapping [48].
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Figure 4.1: Feature extraction

Apart from short term features, features extracted over longer windows or multiple frames
have also been widely investigated. Spectro temporal features such as modulation cep-
strum [32], voice source and prosodic features [4] such as fundamental frequency, jitter,
shimmer, intonation and rhythm and higher level characteristics [22] that capture so-called
supra-segmental stylistic qualities fall under this category. The combined use or fusion
of both shorter term and longer term features has been investigated for a number of years
and has been shown to give better recognition performance under certain conditions [49].
Most of these features have been used successfully with the now-standard, baseline clas-
sification approach which is based on Gaussian mixture models (GMMs).
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4.2.3 Speaker Modeling

Speaker modeling is the core task in speaker recognition. Speech has so much variety that
a few samples of speech cannot be used as templates for the speaker and this is especially
true in text-independent speaker recognition. Stochastic models are hence widely used
to represent speaker characteristics. In this section, the standard Gaussian mixture based
models and other new emerging approaches to stochastic speaker modeling are discussed.

GMM-UBM models

Many current state-of-the-art approaches to classification have their roots in the stan-
dard Gaussian mixture model(GMM) with a universal background model - the so-called
GMM-UBM approach [50]. In this framework, each speaker is modeled by a mixture of
multivariate Gaussians denoted by λ:

P (x|λ) =
K∑
k=1

wkN (x;µk,Σk), (4.1)

where K is the number of Gaussian components, wk is the apriori weight of the compo-
nent k and

N (x;µk,Σk) =
1

(2π)D/2|Σ|1/2
exp

{
−1/2(x− µk)TΣ−1(x− µk)

}
(4.2)

is a D-dimensional multivariate Gaussian.

The most common implementation utilizes a UBM which is trained using expectation
maximization (EM) [21] and large amounts of data from a pool of background speakers.
The Gaussian components are typically initialized used k-means clustering, or any similar
approach. Since cepstral features are mostly decorrelated and in order to reduce the com-
putational requirements, diagonal covariance matrices are preferred over full covariance
matrices.

Due to the common lack of speaker-specific data, target speaker models are generally
adapted from the UBM during enrollment as shown in Figure 4.2. The adapted models
are stored as templates and are retrieved during the recognition phase to determine the
speaker identity.

Speaker specific models are commonly derived using Maximum a posteriori (MAP) adap-
tation [28]. Although all the parameters of the UBM can be adapted, adapting only the
means of the Gaussian components has been found to work well in practice [50]. Given
the enrollment data X = (x1, x2 . . . , xT ) and the UBM, λUBM = {wk, µk,Σk}Kk=1, the
adapted mean vectors (µ′

k) in the MAP sense are a weighted average of the maximum
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Figure 4.2: Speaker identification

likelihood (ML) estimate from the training data and the parameters of the UBM accord-
ing to:

µ
′

k = αkx̃k + (1− αk)µk (4.3)

where,
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αk =
nk

nk + r
(4.4)

x̃k =
1

nk

T∑
t=1

P (k|xt)xt (4.5)

nk =
T∑
t=1

P (k|xt) (4.6)

P (k|xt) =
wkN (xt;µk,Σk)∑K

m=1wmN (xt;µm,Σm)
(4.7)

Here r is the relevance parameter and nk is the occupation count of component k for the
training data. The parameter αk controls the contribution of the original model parameters
and the adaptation data in the adapted model parameters and can be set heuristically by
modifying the parameter r.

When the amount of adaptation data is limited [40], MAP estimation suffers from the
disadvantage of the stronger contribution from non-discriminative background models
compared to the target speaker data. To overcome this problem, more recently Maximum
likelihood linear regression (MLLR) [39] adaptation has been investigated to model the
speakers [55, 35, 60] for speaker recognition task. It is shown to give better results with
small enrollment data but with the availability of larger training set, MAP adaptation
outperforms the maximum likelihood estimates.

During recognition, scores correspond to log-likelihood ratio of the target model on the
test set normalized with respect to the background models.

LLR(s|L) = log

(
P (s|L)

P (s|W )

)
(4.8)

where, s is the test segment, L and W are the target model and the universal model
respectively.

Other normalization approaches such as test normalization (Tnorm) [5] normalize the
score with respect to the scores from the acoustically close cohort speakers

LTNORM(s|L) =
log (P (s|L))− µI

σI
(4.9)

where, µI and σI are the mean and variance of the scores evaluated on impostor speaker
models w.r.t the test segment s.

Additional normalization strategies that are commonly used operating at the score level
include zero normalization (Z-norm) and handset normalization (H-norm) [23].
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Decision logic is usually based on a threshold which is determined using a large develop-
ment set during the training phase. Recognition accuracies in terms of False Accepts and
False Rejects can be traded-off by varying this threshold.

Other advanced models

The state-of-the-art has advanced significantly since the early days of GMM-based ap-
proaches. Support vector machines (SVMs) [20] have become a popular approach to
pattern classification and speaker verification is no exception. Early attempts to use
SVMs for speaker verification appeared in the mid-to-late 90’s e.g. [53, 15]. These
early approaches used cepstral based parametrization and led to results that were infe-
rior to a standard GMM. More recent SVM-based approaches such as the generalized
linear discriminant sequence kernel (GLDS) [16] and the GMM supervector linear kernel
(GSL) [17] approaches are capable of outperforming the standard generative GMM-based
approach [50]. The GSL approach is one example where the input to the SVM classifier
comes from a conventional GMM and is here the concatenation of the GMM mean vectors
[35] better known as the GMM supervector.

Despite harnessing the discriminative power of the SVM the above approaches do not
explicitly model inter-session variability which the next generation of speaker verifica-
tion system sought to achieve. There have been two main approaches, namely nuisance
attribute projection (NAP) [18] and joint factor analysis (JFA) [36]. The NAP approach
aims to attenuate session effects in a discriminative SVM framework. JFA has received a
huge amount of attention and there are numerous implementations reported in the litera-
ture, e.g. [25, 14]. In contrast to feature mapping [166] the JFA approach assumes that the
channel variability space is continuous instead of discrete and combines a model of both
speaker and session variability. Joint factor analysis approaches have proved to be among
the best performing approaches to date.

Finally, any state-of-the-art review would not be complete without referring to the many
attempts to bring additional improvements in performance through the fusion of differ-
ent systems and scoring approaches, some notable examples including [14, 37] but the
above text necessarily focuses only on the underlying, core modeling and classification
technologies which have led to the greatest contributions to the field of text-independent
speaker recognition over the last decade. An excellent comparison of these approaches
using common parametrizations and datasets is presented in [38, 7].

4.2.4 Speaker Diarization

Speaker diarization is inextricably linked to speaker diarization which aims to facili-
tate application in multi speaker contexts by identifying intervals during which different
speakers are active. This entails segmenting an audio stream into homogeneous segments
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based on speaker turns (segmentation) and in grouping together all the segments from the
same speaker (clustering). Speaker diarization systems are often used in conjunction with
both speech and speaker recognition systems when there are multiple competing input
sources for eg., in home care scenarios, meeting rooms and public spaces. The modeling
procedure is almost exactly the GMM-UBM approach described in Section 4.2.3 and thus
models produced through speaker diarization can be used directly for speaker recognition.

The problem is usually unsupervised, i.e. no a priori knowledge is available. This leads to
a trial-and-error search for an optimal speaker inventory and the two dominant approaches
to speaker diarization: bottom-up and top-down hierarchical clustering [24]. The bottom-
up approach based on hierarchical agglomerative clustering is by far the most popular and
systems based on this approach have consistently achieved the good levels of performance
in the NIST RT evaluations [42], e.g. [62]. On the other hand top down, divisive hierar-
chical clustering approaches are initialized with a single speaker model which is repeat-
edly divided into new models until the desired number of speakers is achieved [12, 13, 11].

While some recent online or near-realtime approaches have been proposed [29] but most
speaker diarization algorithms are normally offline in their operation. Both online algo-
rithms, similar to that described in [29] and inspired from the top-down approach in [12]
will be used in the ALIAS project.

4.3 ALIAS Speaker Recognition System

In this section, we first give a brief overview of the speech related components to be
deployed on the ALIAS Robot, followed by specific description of the ALIAS speaker
recognition system.

4.3.1 Speech components on the ALIAS Robot

Figure 4.3 shows various speech related components that will be deployed on the ALIAS
Robot. All the components will be interfaced to and will be controlled by the dialogue
manager

• Speech Enhancement: This module will take as input the noisy speech signal and
removes the ambient background noise. Input from the two microphones on the
ALIAS Robot could possibly be used to produce a high fidelity signal.

• Speech Activity Detection: The role of this module is to partition the input audio
stream into speech and non-speech segments. On detection of speech, this module
will trigger the dialogue manager.

• Speaker Diarization: When there are multiple competing sources of speech, this
module will partition the speech segment based on speaker turns, and cluster the
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Figure 4.3: Speech based modules in ALIAS system

speech chunks associated with each user separately. Current publicly available im-
plementations of speaker diarization systems process an audio segment offline. For
the ALIAS project an online realtime system is being implemented in collaboration
between Eurecom and TUM.

• Speaker Recognition: This module when triggered by the dialogue manager iden-
tifies the speaker of the requested speech segment and provides the dialogue man-
ager with the speaker identity.

• Automatic Speech Recognition: It plays the role of transcribing the input speech.
This module will have speaker independent acoustic models, language models and
dictionary resources required to perform the task. The speaker identity information
available from the speaker recognition module could be used to improve the recog-
nition accuracy by using switching to speaker adapted/dependent acoustic models.

All these modules will be independent and will be called upon by the dialogue man-
ager based on the requirements and context. Certain components in the signal path can
be bypassed and the speech signal redirected to the appropriate module by the dialogue
manager, i.e. where speech recognition is required, but speaker recognition is not.

4.3.2 Speaker Recognition System

The speaker recognition system to be used in the ALIAS project will be primarily based on
the LIA speaker detection system [9] which was developed using the open source speaker
recognition toolkit - ALIZE [1, 10]. ALIZE is now part of the MISTRAL project [19]
which is an open source tool for biometric recognition in general. ALIZE-MISTRAL
tool-kits provide robust C++ implementations of the state-of-the-art techniques in speaker
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recognition and have been used to build several systems used in recent internationally
competitive NIST speaker recognition evaluations. The ALIAS system may also use some
libraries and tools from the Hidden Markov Model Toolkit (HTK) [64] and its applica-
tion program interface namely ATK [2] that are extensively used in speech recognition
research.

The ALIAS speaker recognition system will be completely modular with clearly defined
interfaces. It will be based on the standard GMM-UBM principles as described in Section
4.2.3. The components of the system are as follows:

• Front end: This module will include pre-processing, feature extraction and feature
normalization steps. In the pre-processing step, the speech signal will be normal-
ized to remove any DC offset and will be pre-emphasized to boost the energy in
higher frequencies. Feature extraction will typically involve short term cepstral fea-
tures such as MFCCs and PLPs with their derivative coefficients appended. Other
features based on spectro-temporal characteristics of the speech signal might be
investigated and integrated into this module. The final submodule will involve a
feature normalization component that will include cepstral mean subtraction and
Gaussianization of the features.

• Universal background model: The UBMs will be trained as GMMs with diagonal
covariance matrices with speech data from several speakers. In the initialization
step, the seed models will be set to 16 components which will be initialized by k-
means clustering from the available data. These models will be retrained using an
expectation-maximization algorithm and, after every few iterations, the number of
mixture components will be increased. The number of mixture components will be
empirically optimized.

• Speaker modeling: The UBMs will be adapted to each target speaker using maxi-
mum aposteriori estimation. Only the Gaussian means will be adapted. Maximum
likelihood based approaches such as MLLR may also be investigated to compare
the accuracies in limited data conditions.

• Recognition module: Speaker recognition will be based on log-likelihood ratio
tests which is a ratio of the likelihood score of the target model and the UBM model
for a test speech segment. These scores will be further normalized using ZNorm
and TNorm before arriving at the final decision about the identity of the speaker.

Other recently proposed advances in speaker recognition such as Joint Factor Analysis
and Nuisance Attribute Projection can be computationally expensive and may have impli-
cations with respect to memory and CPU usage when deployed on the ALIAS Robot in a
real time application scenario. Hence the speaker recognition system will use the standard
approach as described above and will use more advanced features where necessary and
depending upon initial field tests.
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Development phase

During the development of the ALIAS speaker recognition system, it will be extensively
tested using NIST SRE (National Institute of Standards and Technology Speaker Recog-
nition Evaluation) corpora in an offline mode. The NIST SRE datasets and experimental
protocols are the defacto platform to evaluate the state-of-the-art algorithms and systems
in speaker recognition research. It is a biennial worldwide evaluation [43] and a cor-
pus is released in each evaluation. For developing the ALIAS system, appropriate NIST
datasets will be used. These corpora have speech from a large number of speakers and are
partitioned into training and test sets to suit speaker recognition experiments.

The system will be tested with varying amounts of enrollment and test data and under
matched and mismatched conditions in enrollment and test data to baseline the results
against the state-of-the-art systems. Tests under such varying conditions would indicate
the accuracy tradeoffs with the amount of available enrollment and test data and thus lead
to the development of data guidelines for user enrollment with the ALIAS Robot.

Deployment phase

For the deployment on the ALIAS Robot, additional C++ wrappers will be written for the
speaker recognition system to interface with the dialogue manager in consultation with
the ALIAS consortium partners. The universal background models generated from NIST
corpus will be used in the deployed system as the training of UBMs needs speech from
several speakers which cannot be realistically collected using the Robot microphones dur-
ing the project lifespan. Based on the detection error tradeoff curves obtained during
NIST-style development evaluations an optimal amount of required enrollment data will
be determined beforehand and each user will be asked to record a set of appropriate ut-
terances. Recordings will be made from different directions and distances relative to the
ALIAS Robot. Typical background noises originating in home care setting such as am-
bient noise, sound from microwave oven, fans etc. will also be recorded to build a noise
model. An online speaker diarization system will also be developed in collaboration with
TUM and will be field tested in conjunction with the speaker recognition system.

Open issues

The mobile ALIAS Robot platform has only two inbuilt microphones towards the front.
As a result the fidelity of the speech signal captured from behind the ALIAS Robot as
well as from various directions is not well understood. There would be some research
effort to understand the signal quality and the impact on speaker recognition accuracies
arising from these issues.

An interface needs to be defined and developed for integration with the dialogue manager.

33



ALIAS D3.3

A speech activity detector module will run continuously in the background to detect and
alert the dialogue manager to the presence of any speech activity. The speaker recogni-
tion module, possibly in conjunction with the speaker diarization module, will then be
triggered by the dialogue system to identify the user on an as needed basis. The commu-
nication interfaces between the dialogue manager and the various speech based modules
will need discussion and agreement between project partners.

More speech data will become available with the use of the system by the target users.
This data could potentially be used to further adapt the speaker models. A strategy for
online adaptation may be considered if it is deemed necessary. Speaker model adaptation
should ideally happen when the ALIAS Robot is in a dormant mode. There are some
practical open issues such as the memory constraints on the ALIAS Robot, unsupervised
selection of the speech based on the signal quality and the frequency of model adaptation.
All of these issues will be addressed once the first demonstrator is complete.
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