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1 Executive summary

This document is one of a series of deliverables, which describes the navigational part of
the ALIAS project. The navigation within ALIAS focuses on "socially acceptable navi-
gation", which means that the human being and the robot, both as social entities, should
react to each other in natural ways, and that especially the robot treats a detected person
not only as an obstacle, but applies psychological rules in such cases.

While the first deliverables D6.1 [11] and D6.2 [12] covers the psychological and geron-
tological background, the state of the art, and methods to implement of all parts of the
navigation system, this deliverable provides information on the software structure, the
central planning approach and the extension of navigation behavior of the robot. We
show the current state of implementation and testing.

This deliverable covers experimental results and details on implementation of the naviga-
tion module after the first year of development.
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2 Introduction

Since mobile robotics exist, the task of moving a robot is a main challenge of robotics.
In industry applications motion patterns are often pre-programmed and remain the same
all the time, for example when cars or electronic devices are assembled. In such cases,
motion is very exact, but also completely inflexible. This means, the system could not
react on changes in the environment and is in that case not "intelligent". It assumes on
every action it does identical conditions. Mobile robotics faces the problem on controlling
the robot in unknown situation, which are not predictable or countable beforehand, and
have to react in a safe, goal driven, and natural way. This describes the challenging task
of "motion planning". One the one hand this can be solved by pre-defining drivable paths
the robot could drive and label these paths with magnetic sensors, which is often done in
industrial service robotics. This approach needs planning effort even when the building
is constructed. On the other hand the robot has to be made "intelligent", to allow it to
react on all kinds of every-day situations. The latter case is the goal to be achieved by the
ALIAS robot. The home environment, the robot works in, is different from all other home
environments, so it has to adapt itself to each new environment. Also the safety rules, the
tasks and the psychological rules remain the same in each environment.
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sense

act

plan
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Figure 2.1: The two paradigms of motion planning. I: the direct mapping of sensor input
to actions, which is very fast. II: the planning approach, where a planner generates the
action of the robot.

In the theory of neuroinformatics two paradigms are discussed to control a robot (see Fig.
2.1). First, the "sense - act" paradigm. Here, the robot gets its sensor information like
a camera image, laser sensors, depth information, etc., and chooses by itself a suitable
action to fulfill a certain task, like following a person or reaching a certain place. This
approach assumes a learned direct response of environmental input. Such reactive mech-
anisms could be found inside the human’s spinal cord and low level "reflex-like" actions
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of the human brain stem. Also insects are known to navigate with such mechanisms. The
benefit (also in technical devices) is, that such mechanisms are very fast to compute.
The second paradigm is the "sense - plan - act" paradigm. In addition to the first paradigm,
a planning step is placed to be the central decision process. While in the first approach
the environmental knowledge is represented more indirect by training reflexes, here the
environment is represented by a dedicated model, like a map, and actions are chosen by
evaluating plans inside this "inner world model". Usually every complex task need some
sort of planning and this paradigm can be found in almost all complex biological (mobile)
entities, ranging from birds towards mammals. The drawback of this approach is that an
immediate response of a system is not given, since one has to "think about" a situation to
create a sufficient plan.

robot position

Motion Control

person position

person detection & tracking

map building

map

task

localization

motion command

dialog manager

Figure 2.2: Dataflow diagram of the navigation software module.

Both paradigms can be used to create a motion planning system. Within this deliverable
we provide approaches and experiments for both paradigms. Classical motion planning
has to fulfill three tasks: the robot has to localize itself within the environment, the robot
has to move through the environment without harming itself or other parts of the environ-
ment, and the robot should drive to a given target. Only the latter parts, the danger-free,
goal directed driving are acting parts of the software system, while localization deals
more with sensing and state estimation. In Fig. 2.2 the structure of the whole navigation
software system is shown. Here, additional modules are needed to support the navigation
process. The localization was already mentioned as a module which estimates the posi-
tion of the robot. Despite this function, also an entity is needed, which creates a map of
the operating environment and also a module is needed, which gives the motion control
system the position and identity of recognized persons. Last but not least, also a task has
to be specified, given by the dialog manager.
This deliverable will focus on the person detection & tracking module and on the motion
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controlling module, which will be described in more detail within this deliverable . The
dialog manager is described in detail within the deliverables of work package 3. To give
the reader an idea, of what the localization module and the map building module will do,
we present a brief description of the used algorithms for both modules:

2.1 Helping software modules

2.1.1 Localization

One of the basic prerequisites to navigate a robot is, that the robot needs to know, where
it is. This sounds in the first thought as an easy problem, since each human could solve it
and also it is known from car-navigation systems, that cars also seem to know their exact
position by using GPS positioning systems. But the main problem on this task is: you
cannot measure the position! It is possible with GPS localization systems to get a rough
idea of the position, but could easily make errors of up to 10 meters. Usually, reliability
is within 1m, which is in home environments not sufficient. Also, in indoor-environment
GPS is usually not available and has to be installed in every environment.
The position of the robot has to be estimated, in quite a way humans would do it: you can
measure the distance from distinct points (like doors, edges, etc.) towards the robot and
could construct the position geometrically. But these measurement are erroneous. Each
time the measurements are done, a slightly different position will be calculated (which
is also a proof that the position could not be measured directly). When the robot moves
through it’s environment after every motion step the position has to be re-estimated. Here
two values could help to estimate the position: on the one hand the measured motion of the
robot (also called odometry) and on the other hand, and most important, the observations
the robot does with its laser scanner.

Figure 2.3: The different form of a robot’s position probability distribution modeled by a
particle filter like shown in [6]. In a) the position could be estimated very sharp while in
b) only the relative to the left and right walls could be well estimated. In c) no distance in-
formation is available to estimate the position, so only the robot motion is used to sample
the distribution.

By using both measurements and taking into account that both will be erroneous, a recur-
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sive state estimation problem could be formulated, which results in a probability density
distribution of the robots position. To model this distribution we use a so called particle
filter, which is a common approach within the robot community (see e.g. [14], [20]). De-
pending on the distinctiveness of the observation, the distributions could lead to different
forms. This is shown in Fig. 2.3, where three typical situations are presented. So the exact
robot position is never known, but the uncertainty is sometimes very small, but could also
sometimes be within a few meters. It is a usual approach to take the most likely position
within the distribution as the result of the estimation process.
There exist a few classes of localization problems like the ability of the system to localize
itself in a global fashion, which means the robot only knows the map of the environment
and could estimate its position, as well as a local position tracking, which enables the
robot to keep track of its current position with knowledge of the start position. Our system
can solve the latter case.

2.1.2 Map building

To enable the robot to operate within the environment, it is necessary to know how the
environment looks like. This is usually represented by a map. As described above, it
is impossible to measure the position of the robot, so it is naturally also impossible to
measure a map, since the map has to be recorded from many positions, which could be
only estimated, and to make things worse, the positions could only be estimated with the
help of a map. So this is a classical chicken-and-egg problem and is also a very hard
estimation problem, called the SLAM (simultaneous localization and mapping) problem.

Figure 2.4: Our iterative on-line approach on learning a map. The driven path and the
corresponding map is estimated by a particle filter. In this example (from [16]) a home
store is shown.

Key idea is always, to collect a series of observations, collect also the driven distances, a
assemble from these puzzle pieces of observations and distances the most likely map with
the most likely driven path. We also use a particle filter to solve this estimation problem
(see [16], [6]). Since it is memory and computational hard to do the map building in a
lifelong manner, we have to do this building process in advance for each new environment
the robot should operate in.
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2.2 Structure of this deliverable

After showing the key concepts of the helper modules, no further details about these
modules will be discussed here. So the rest of the deliverable will be structured as follows:
In chapter 3 the person tracking module will be described in detail, since this module
is a key prerequisite for social acceptable navigation. After this chapter is done, in
chapter 4 the concept of a "sense-act" motion planner is presented, which implements
a reinforcement-learning approach to steer the robot. In the next chapter (chapter 5) a
"sense-plan-act" approach is presented (namely the Dynamic Window Approach), which
is a well known motion planner and is already part of the navigation system, given from
ALIAS partner MetraLabs. We present in the next chapter (6) the addition to this Dy-
namic Window Approach, to realize an approaching behavior. In the last chapter a short
conclusion is drawn and an outlook towards the next years report is given.
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3 Tracking a person

3.1 Introduction

The most important basic ability to enable a robot for social acceptable navigation, is to
detect a human. This task is quite challenging and whole projects deal only with this
topic. This task is also not clearly defined in the projects description of work. That’s why
we decided to use software, already available and free to use. At the beginning of the
project we planned to use as input modalities the laser range finder, a panorama camera
on top of the robot and an fish eye camera in front of the robot.

As already described in D6.1 [11], we initially planned to use the Augmented Reality
toolbox "ARToolkit", to detect black and white patterns with their corresponding position
in space. On that approach we encountered numerous problems: first, the camera has
to be calibrated and the camera model is not sufficient to reflect the properties of a fish-
eye camera. Only in the mid region of the scene positions are undistorted. Second, the
software is not maintained any more and third: the real world appliance (due to lighting
conditions) and the need of wearing pattern plates is relatively low.

But the most important point: with the introduction of Microsofts Kinect device, rules of
the market of person detection changed. Around this device a very agile, dynamic and
enthusiastic community developed with astonishing speed. At the date of writing this
deliverable, even Microsoft has published a closed source software library to enable Win-
dows developers using the Kinect device to detect persons, person poses and gestures.
This shows the impact of this device, since it was originally designed for a video game
play console.

This is also the reason why we decided to discard the idea of using the ARToolbox and
instead using the Kinect device with a library to detect persons. So our final configuration
is the laser scanner input, the panorama camera (for face detection) and the Kinect device
for pose recognition. In this chapter we present the work done to use these input channels
to our purposes.

3.2 Laser based leg detection

The used approach was first described from Arras in [1]. In this publication an AdaBoost
classifier was trained on a set of 14 predefined features, which are calculated from laser
segments. To obtain these segments, the laser scan is segmented by a running slice seg-
mentation. Figure 3.1 shows two examples for scans and their segmentation results.
Sources for this classifier are, however, not available. But the company Willow Garage,
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false positive detections true positive detections

Figure 3.1: Two example scans for a complex situation to detect legs within. Here,
the scan (blue fan) is shown plus the corresponding segmentation (colored boundaries).
Small circles determine the segments, classified as "legs". It could be seen that in complex
scenes pair-like structures are quite normal and detected as false-positives. But it is also
possible to detect real legs. This is the first channel of our person detection module.

with its famous framework "Robot Operation System" have created a very similar ap-
proach, although no publication are available. They provide an experimentally free person
tracker. By investigating the source code, we found the part of leg detection very simi-
lar. They use the same 14 features on scan segments, but use a different classifier (here,
random forests are used for classification). Additionally Kalman filters are used to track
the leg hypothesis and also estimate the speed of a person. We used this source code and
ported it to our platform architecture. Since this code is published with the GNU LGPL
there are no copyright restrictions in usage.

3.3 Detecting persons in 3D point clouds

The second modality we use to detect persons is the Kinect depth camera. This device is
a camera, which could deliver for every pixel in the image also a depth information. The
camera could deliver depth images with 30 frames per second. Currently there are two
closed source libraries on the market which allow the segmentation of those depth images
and which also try to fit a skeleton into these segments. At the one hand the OpenNI
framework with the NITE component installed and on the other hand the KinectSDK
from Microsoft. An example of the NITE detector is shown in figure 3.2. Both libraries
need a lot of resources to detect persons. More details will follow in the experiments
section below.
Due to this high demand on processing power we currently develop an easy estimation
algorithm of the upper body pose of a person to avoid the processing needs of the skele-
tation stage. This could only be done in the OpenNI framework. We rely here on the
correct segmentation of the depth image. Since segmentation fails when the robot moves,
we apply a simple filter for each segment, to classify person-segments and non-person
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Figure 3.2: Two examples of segmented point cloud by using the OpenNI framework
and the NITE segmentation stage. The coloured points represent those points of the point
cloud, which belong to a person.

segments. Currently we use a simple threshold heuristic on each segment as a classifier.
Future experiments will show if this is sufficient or if more reliable classifiers are needed.
Details on the upper body pose estimation will be presented in the next deliverable.

3.4 The person detection module

The person detection module has two sub-modules we already mentioned: the laser based
leg-detector, which is able to detect very reliable leg-pairs and their corresponding speeds,
but also returns many false leg hypotheses. On the other hand we have the Kinect device,
which delivers very accurate person hypotheses and the upper body pose, but sometimes
fails to detect persons. Currently both channels are handled separately, which means that
hypotheses from both channels form each an independent hypothesis.
Future work, which will be done in the next two month, will combine both channels in a
probabilistic Kalman filter framework, to fuse both channels to a more reliable channel of
hypotheses.

3.5 Experiments

For both channels we did very basic experiments to find out more about the detection
properties of both channels. To do so, we record a set of example situations and run all
detectors on them. The first results of the leg detection where disappointing. No legs
could be recognized at all! Deep investigations on the algorithm showed, that the clas-
sification tree does not fit to our used laser scanner. We had to develop a tool to create
training data for a new classification tree. After this was done the leg classifier works as
expected. We still encounter some small problems with the used Kalman filters. Prob-
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Algorithm Runtime/step Resources/%
NITE 26 ms 60

KinectSDK 35 ms 80-100
Laser legs 3 ms 10

Table 3.1: Results on all three detection algorithms for processing time and consumption
of processor resources of a dual core system in %. Note that the percentage is for both
processors.

lems are, when new filters should be added and when new filters should be removed. But
the current impression of quality of the leg detector is good, but could be improved. The
resulting leg classifier is very fast.

The tests of the Kinect NITE detector was quite short. Most work had to be done to cou-
ple the NITE detector to our environment and to test detection speeds. We did this also
briefly with the Windows KinectSDK on the robot. We encountered in both approaches
one common problem: if the robot moves, also parts of the static background where seg-
mented and are at least candidates for persons. The KinectSDK ignores these segments
and only returns results for valid found skeletons. This could be done very robustly. The
NITE framework could also create skeletal information, but needs an initialization pose,
which is not always detected. This initialization makes the NITE skeletal processing diffi-
cult for real world experiments with non-expert persons, since a feedback has to be given,
if initialization succeeds. This is also a point why we decided to NOT use the NITE skele-
tation process.

Both libraries (NITE and KinectSDK) have in common, that they only work, if a person
is fully seen by the camera. Depending on the position, this is the case from 2 meters
upwards. Here, the need of combining laser scanner and Kinect could be seen.

Last but not least, we will present some results on the needed processing power for a
single detection step. All algorithms run on a dual core 2.66 GHz processor on the robot.
Beneath the pure calculation times we also show the percentage of processor consumption
for all three approaches. The results are shown in table 3.1.
It could be seen that leg detection needs almost no time and needs only a few resources.
The processing of point clouds seems very time consuming and it is easy to occupy two
processors for such a task.

3.6 Conclusion

During the development of these task we have encountered two major impacts. First, the
appearance of the Kinect sensor, which replaces the visual channel and second the dis-
covery, that processing of point clouds is very time consuming. For our next experiments
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we have this processing power, but for the final system we have to lessen the processing
burden a lot. One idea is to downsample the used points of the point cloud, or to optimize
the current algorithms. This may mean that none of the existing point cloud detectors is
uses.

In future work we will also focus on fusing all channels for person tracking to improve the
classification results. This means not only the usage of the laser channels and the depth
image, but also the face detection channel and the face identification channel. The results
of these works will be shown in the next deliverable.
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4 The Reinforcement Learning Approach

4.1 Main concept

During the introduction we already mentioned, that the reinforcement learning approach
belongs to the "sense-act" paradigm. This means, that the observation of the robot (in
our case a laser scan) is used to directly derive an action, without an additional planning
stage. The reaction of a given situation has to be learned. Reinforcement learning is
a unsupervised learning approach, which means, that no teacher is needed to show the
robot, what it should learn. The evaluation of the state/action is hereby a punishment
or reward (negative or positive values), depending on the fact, if a chosen action was
beneficial in a given situation or not. This concept is copied from biological entities,
where also learning without a teacher occurs for example when learning to move without
hitting an obstacle, learning to open and close drawers. Children use this kind of learning
in an extensive way. Pain is usually the signal of punishment, whereas a positive feedback
is the successful exploring of new space or a compliment of the parents.

robot action

environment

atrt+1

st+1

rt

st

reward

situation

Figure 4.1: The robot motion control module and its environment (from [10]). This figure
shows the interaction cycle from the robot and its environment in a reinforcment learning
way. The robot chooses from the current state of the environment (and itself) st a possible
action at. This changes the environment and gives the robot as a feedback a new state
st+1 and also an reinforcement signal rt. The reinforcement signal tells the robot if the
previous action was a feasible one.

In robotics, the so called reinforcement function r defines the positive and negative feed-
back of the system. This function evaluates the current state S of the robot or the action
A the robot has executed in a particular state.

r : S × A (4.1)

16



ALIAS D6.3

The benefit of such an approach is, that unlike classification or approximation problems,
no training data has to be collected, and the system is ready to learn by just defining the
reinforcement function. The learning system just gets told, what was a good action in
a given state and what was a bad action and has to develop a global optimal strategy to
maximize the rewards it gets. Note, that the sum of the upcoming N rewards has to be
maximized, not only the next reward the system expects to get.

R =
N∑
i=0

r(ti) · γii ∈ (0..1) (4.2)

The parameter γ controls, how long rewards are collected over time, to define the expected
long-term reward and is called the discount factor. In this way short viewed decisions as
well as long distance decisions could be learned. The practical problem is here, that
the robot has to discover which states are good or bad and therefor also has to explore
dangerous states. This means, training should always happen in an save environment, like
a simulator. The resulting optimal strategy is also called policy. One way to model the
policy is to create a function of state-action pairs. This forms the most popular approach
of reinforcement learning, the so called Q-learning. The following section will describe
this approach.

4.1.1 Q-learning

As stated in [18], many reinforcement approaches assume the knowledge of a state tran-
sition function (or an environment model), which gives the information, in which next
state the system will switch, if a certain action is executed. In reality, such a function is
hard to create or even impossible to construct. The Q-learning approach does not assume
the knowledge of such a function. Instead of coding only the benefit of being in state st
within the policy, Q-learning models the benefit (or the expected long term reinforcement)
for being in statest and executing the action at! To do so, the function Q(s, a) is intro-
duced, which simply tries to learn for every possible action in a given state the expected
long term reward, defined in equation 4.2. Fig. 4.2 shows such a Q-Function in case of
discrete states and actions. In the beginning this Q-function is initialized with constant
values or random values, since no knowledge is present, which actions are actually the
best. In fact the system has to explore good actions! Here different approaches are known,
which lead to different exploration strategies and different results in the Q function. We
have investigated this fact in experiments.

The exploration exploitation dilemma

In the beginning of the systems training cycle, a huge number of state-action pairs has
to be tried to get an impression of the benefit of such an action. Since the states of the
environment are not controllable the only remaining question is, what action to select
when being in a certain state?
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Figure 4.2: Structure of the discrete Q-function with n states and three possible actions.
From the Q-function the optimal policy is obtained by choosing for example the maximum
Q values.

After learning is finished this task is quite simple. The robot simply choses the action with
the highest estimated overall reward, or the maximum value of all Q(a, s) for a given s
and all ai. In the initial phase the information of the best action is not available, since
the system has never experienced such an action. Here, a random selection of possible
actions would be preferable.
In the beginning the system should explore its action space, while with the trained Q
function, the system should use gathered knowledge and exploit that knowledge. And
the exact point, where to switch both behaviors, formulates the exploration-exploitation
dilemma. To overcome this dilemma we use an action selection mechanism that is known
as the Bolzmann-action-selection. For a given state s it is defined as follows:

P (ai) =
e
Q(s,ai)

T (t)∑
j = 1Ne

Q(s,aj)

T (t)

(4.3)

T (t) is hereby the Bolzmann temperature, when this temperature is very high (T (t)→∞)
the probability of choosing an action ai is equally distributed 1/N . When the temperature
cools down (T (t) → 0) the highest Q value will become the most probable (with nearly
99%) and the caracteristic of a maximum selection will be realized. For a high temper-
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ature the system will have a strong explorative character while in with low temperatures
the system will show exploitation characteristics. By choosing T (t) to be an exponential
falling function, the exploration-exploitation dilemma can be at handeled. We use this
action selection technique in each of the following learning approaches. We also tested
each approach experimentally.

Temporal difference learning

The simplest form of Q learning is the TD algorithm (see [18]). Here, only the transition
between two successive states is considered: first the Q value from the previous visited
state st−1 plus the selected action at−1 and the next entered state st. The learning equation
is relive simple:

Qnew(st−1, at−1) = Qold(st−1, at−1)

+β ·
([
r(st, at) + γ ·maxajQ(st, aj)

]
−Qold(st−1, at−1)

)
The variable β is the systems learning rate and γ is the previous mentioned discount
factor, to control the long term or short term characteristic. The new Q value is adjusted
with the received reinforcement and the old Q values of the old state-action pair and the
maximal expected future reward. This learning approach has a major drawback: by using
just two values of Q values the exploration process has to visit a lot of transitions to
cover the whole state-action space one time. To let the Q values converge, many visits of
state-action pairs are needed, which leads to a very long exploration phase.

Truncated Temporal Differences - TTD

To speed up the convergence it is possible to use more than one state transition, which was
invented by Sutton [18]. This allows the algorithm to include memory into the system
and respect more than one previous actions. To do so, two additional parameters are
introduced:

• m: number of state transitions to remember

• λ: trace decay parameter

The TTD(λ,m) algorithm has to perform m steps until it can update the Q value visited
in the first step. The update is done by the following recursive equations:

Zt−1 = rt−1 + γ ·maxajQ(st, aj)

Zt−k = rt−k + γ ·
[
λZt−k+1 + (1− λ) ·maxajQ(st−k+1, aj)

]
∀k ∈ (2..m)

Qnew(st−m, at−m) = Qold(st−m, at−m) + β ·
(
Zt−m −Qold(st−m, at−m)

)
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By using more rewards and more state transitions, the convergence process could be im-
proved, since each update step has a larger knowledge window. The problem is now the
usage of random selected actions, since here positive rewards can lead to higher Q values
in a large chain of actions, where the rewarded state action pair has nothing to do with the
high reward. Nevertheless, small chains of actions can lead to significant speedups of the
exploration phase without negative side effects.

Genetic Q function manipulation

A new idea in speeding up the Q learning approach, is to combine the Q learning strategy
with genetic algorithms. The main idea is, to evaluate the policy during usage, no matter
how this policy is created. A policy π is defined by assigning one action to each state.
Usually the policy is created from the Q function. In this approach, presented by [9], we
hold a whole set of policies. One is derived from the maximal Q value per state, all others
are selected randomly. Each policy could be evaluated and the best policy is used for
selecting actions from states.
During the observation of the best policy the reinforcements are traced and situations are
detected, where the policy fails. These parts of the policy are optimized by an genetic
algorithm. The following steps are executed during learning:

1. Initialize the Q function randomly

2. Generate a pool of random selected policies

3. Evaluate each policy and select the best as active policy

4. Drive with the best policy until a failing situation is detected

5. Upgrade the critical part of all policies

6. Evaluate each policy and select the best as active policy

7. Retrain the Q function with the active policy

8. Goto 2.

Recognition of a critical fail of the current policy: First, the robot drives with the
(random selected) best policy and simply records the reinforcement signals ri it receives
and the corresponding states si the robot visits. When a sequence of constantly bad feed-
backs are detected, a critical situation is detected! All states with negative feedback are
marked, which is shown in Fig. 4.3.
Since we have created a pool of policies (where just one is active), we select only the parts
of the policy where the states where visited during the failing situation and a short period
of K states before the sequence of negative feedbacks begun. Obviously the actions
chosen within these states are not appropriate and other actions should be chosen. All
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new training start position

r(t)

learned good policy policy part to adapt by the genetic algorithm

Figure 4.3: Detection of a critical failure of the current policy. Whenever a sequence of
bad reinforcements is detected, a critical situation arises.

other states of all policies are defined as well-learned. In our implementation a queue
of 40 states are recorded and if a sequence of 10 consecutive negative reinforcements is
recognized, a critical situation is detected and the genetic optimization is start upon the
marked parts of the policy.

Optimization of the critical situation: When optimizing the pool of policies, the first
step is to extract the marked states from the pool of full policies. This is simply done by
queuing all marked states in a new sub-policy for each full policy, like shown in Fig. 4.4

pool of complete policies pool of selected policy parts
to optimize with the genetic
algorithm

Figure 4.4: Before actual optimization starts, from the pool of full policies a set of sub-
policies is created. Here, only marked critical states are used.

As stated before, a genetic optimization algorithm is used to optimize the pool of sub-
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policies. Genetic optimization is done by using three mechanism of evolution, namely
mutation, recombination and selection. To select a group of best results, we have to
evaluate the new created sub-policies by repeatedly "practicing" the situation, where the
robot fails. By simply counting the number of positive rewards, a fitness of each sub-
policy could be calculated. We want to keep the number of sub-policies constant. When
recombining and mutating the policies , the number of policies doubles. When calculating
the fitness of each policy, we could rank all policies and throw away the 50% of the
worst. For each state in the policy, recombination is done with the Q function and the
current policy π(s) by defining the likelyhood of changing the current action with any
other possible action, which equals very much the Bolzmann action selection:

P (s, ai) =
e
Q(s,π(s)
Q(s,ai)∑
j
Q(s,π(s)
Q(s,aj)

(4.4)

Note that in the equation above probability intervals are defined for recombination with
the Q function. A random number will select, which interval is chosen, and in this way
also the mutation process is already included in the above equation.
After successful recombination and mutation of all sub-policies of the pool, an evaluation
cycle is started to get the fitness of the new created sub-policies. This is done via a
simulator, since the critical situation has to be replayed as many times as the number of
policies in the pool. This is quite an expensive calculation step. After all policies are
evaluated and selected, the progress of improvement of the best policy is investigated. If
after 50 evolutionary steps no improvement could be measured, the policy optimization
terminates.

including the improved partial policy 
to the pool of policies

Figure 4.5: After the genetic algorithm terminates, the best sub-policy is selected and
projected back into the pool of overall solutions.
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Action turn left straight turn right
Vrot in deg/s 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8
Vtrans in m/s 0.2

Table 4.1: The set of defined robot actions

Q function update with new policy The found best sub-policy, created from the genetic
optimization process, is now re-established into the overall policy pool (shown in Fig.
4.5). Note, that also the active policy is updated. Now the robot has learned to deal with
a new critical situation. The only remaining problem is, that the Q values do not fit to the
updated, active policy.
Unfortunately Iglesias [9] does not report, which training algorithm is used to update the
Q function. We choose the standard Q learning approach, since only a small part of the
Q table has to be updated. To keep the new policy and the Q function synchronous, the
robot has to adapt the Q table in an after-training step (by using the simulator again) and
simply applying the new active policy within the critical situation, this time with activated
standard Q learning. When the Q function converges, the after-training is stopped.

4.2 Experiments

In the last section we presented the theoretical background of Q learning with the focus
of three different learning approaches to create a sufficient Q function. But how does
these approaches work in real situations? To test these approaches we defined a small
navigation task: the robot should follow a path and should not collide with an obstacle. As
input data from the environment the robot receives its range data from the laser scanner,
the direction of the path and the reinforcement signal. The robot could decide between
nine actions (see table 4.1 for details). In all cases the learning process was calculated
in a simulated environment. Only the results of the standard Q learning approach where
tested on the real robot. All other results do not show a stable simulated behavior.

4.2.1 State estimation

The first problem arises when estimating the state of the robot. The state is defined by
all knowledge the robot is given from the environment, here the direction to the path to
follow and the scan input. All these values are defined in continuous space, while in
our representation the states of our system have to be discrete. The laser range sensor
gives an input of 541 ranges, the direction of the path is one extra input, so we have a
542 dimensional space to find descriptive points within. To reduce the dimensionality
of the space to discretize, we split the range scan into 16 equally spaced intervals and
searched in each interval for the minimal range to represent this interval. So we have a
17-dimensional space to find our discrete states. A classical way to discretize spaces to
states is to cluster the given space into a number of clusters. Each cluster represents a
discrete state (but contains an infinite number of possible points). We choose to have 220
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clusters or states and we choose the neural gas clustering to select them.

Clustering with the neural gas: The neural gas is one candidate of self-organized maps
and was developed by Martinetz [15]. It was developed to represent complicated input
patterns, which may only be present in sub-spaces of the whole input space. It is defined
as a one-layered unsupervised neural network, where every neuron has n input weights
according to the input dimension. In our case each neuron has 17 input weights and we
have 220 neurons inside the net, each neuron for a cluster. Upon training of the net, the
training input patterns X = (x1, x2, .., xn) are shown to the net. The Euclidean distance
between the presented input and the neural weights are defining the distance between
a neuron and the input. In this way, a nearest neighbor neuron can be found for each
presented input. For each input the distance to all neurons can be calculated and the
neurons can be sorted by distance, starting with the nearest. According to the rank in the
list each neuron gets its activation function ki(xj), where the nearest neuron gets the rank
0, the second nearest the rank 1, etc. For each input xj the net adapts its weights wi for
each neuron as follows:

wi(t+ 1) = wi(t) + η(t) · [xj(t)− wi(t)] · h(ki(xj)) (4.5)

Here, η(t) is the learning rate and decreases over time to guarantee the convergence of
the training, while h(ki) is a neighboring function, defined by a Gaussian, decreasing the
influence of the input for higher ranks:

h(ki(xj)) = e
ki(xj)

r (4.6)

The variable r is the learning radius (in ranks). After the training, the nearest neighbor
neuron is the corresponding state to a continuous input.
In our experiments we recorded a set of situation with different obstacle situations and
augmented these with different directions towards the target. These data set forms our
training data.

4.2.2 The reinforcement function

A second problem in real world applications is the definition of the reinforcement func-
tion. After a few unsuccessful trials we found the following definition of such a function.
The function consists of two parts: a collision part and a part to deal with the planned
path’s direction.

r(s, a) = collision(s, a) + direction(s, a) (4.7)

The collision part is quite easy. If a collision occurred in a given state and after a certain
action, a negative reinforcement is given. No reinforcement is given in all other cases:
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collision(s, a) =

{
−10, if collision
0, else

(4.8)

The direction part is a bit more complicated, since the reward does not only depend on
the state but also the action, because it is worth a reward if the robot faces with the back
to its direction and additionally rotates to the correct direction. We also reward a correct
heading more than an incorrect heading:

direction(s, a) =


1.3, if AngleToPath ≈ 0
1, else if abs(OldAngleToPath) > abs(NewAngleToPath)
−1, else

(4.9)

4.2.3 Results

Now that the question on state estimation, action selection and reinforcement function is
clear, we have used two environments to test all three approaches to for the quality of the Q
function. Our training environment is quite simple, mainly an empty room. Additionally
we evaluated the resulting Q function, state estimators etc. in an unknown environment,
which is a challenge for the state estimator network. The environments are shown as a
map in Fig. 4.6.

Figure 4.6: The two test environments. On the left is the (empty) training environment,
while the unknown evaluation environment is shown on the right.

As mentioned earlier we always used the Bolzmann action selection. This forms the
following set of parameters for all training approaches:
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Known Environment Unknown Environment
Approach neg. reward (in %) neg. reward (in %)

std Q learning 1,675 8,48
TTD 5,15 22,2

genetic 21,11 21,68

Table 4.2: The results of quality measurement of all three learning approaches

• learning rate β = 0.9

• trace decay λ = 0.75

• discount factor γ = 0.7

• start temperature T = 10000

• TTD depth m = 25

After finished training we evaluated each learning approach (Q learning, TTD learning,
genetic algorithm) towards its quality. The quality is measured by counting the number
of times, the robot receives a negative reinforcement. The results are shown is table 4.2.
The interesting fact is, the the standard Q learning is the most robust learner. All other
learners work not well within the unknown environment. To clarify this effect we have to
look at the resulting Q functions, which are shown in the figures 4.7, 4.8, and 4.9.

Figure 4.7: Resulting Q function after 10 iterations of the standard Q learning algorithm.
The state-action space is explored very densely.

Here the main problem is the sparsely explored state-action space. Only standard Q learn-
ing gives reliable results, both other approaches, even after convergence, are not suitable
to solve our given task.
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Figure 4.8: Resulting Q function after 10 iterations of the TTD learning algorithm. The
state-action space is explored only sparsely.

4.3 Conclusion

After investigating the power of the promising reinforcement approach a mouldy after-
taste remains. It has shown that several hidden problems have to be solved to get a system
running. First, the state estimation is a huge problem. The collection of training data of
each input modality and the parametrization of the clustering system is a source of possi-
ble errors, which can lead to complete failing of solving the given task. Also, each task
like following a person, driving to a target or observing a person changes the dimension
of the input and so a complete new cluster has to be computed.

Second, the exploration phase of the system has to be parametrized correctly to guarantee
a fully explored state-action space, and in every day use, this guarantee may be impossible
to give anyway. Last but not least, the reinforcement function has to be hand tuned to fit
to the given task and to enable the robot to learn that task. Here our trials have shown that
even simple approaches to formulate such a function lead to unwanted and unforeseen
robot behavior.

Note, that all these points do not consider, which learning approach is used, but show
only the problems, defining the prerequisites to start the learning. The configuration of
the prerequisites is in itself an expert task for each new problem, which should be solved
by such an approach. With such properties, reinforcement learning is not modularizable
and is not suitable for our robot system.
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Figure 4.9: Resulting Q function after 14 iterations of the genetic learning algorithm.
The state-action space is explored only sparsely and we need a larger number of iterations
to get a result comparable to the TTD algorithm.

Also huge security concerns arise when using reinforcement learning, since much ran-
domization is involved in the learning process and so it could not be guaranteed that a
good (and collision free!) solution could be found. This is not the case in the next ap-
proach, where safety could be guaranteed.
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5 The Dynamic Window Approach

5.1 Main concept

One of the most successful motion controlling strategies is the so called "Dynamic Win-
dow Approach" [5]. As already mentioned in the introduction we can count this approach
as a sense-plan-act approach. It defines a window inside the action space (sometimes also
called configuration space), which means rotational speed Vrot and translational speed
Vtrans for our robot. Such a configuration is shown in Fig. 5.1. The window is always
centered around the current speeds of the robot. It defines a physical plausible region
around the current speeds, which is constrained by the maximal available acceleration
and maximal deceleration. The maximal speeds for the next time step ∆t are defined as
follows:

V max
trans(t+ ∆t) = V curr

trans(t) + atransmax ∗∆t

V min
trans(t+ ∆t) = V curr

trans(t)− atransmax ∗∆t

V max
rot (t+ ∆t) = V curr

t (t) + arotmax ∗∆t

V min
trans(t+ ∆t) = V curr

trans(t)− arotmax ∗∆t

Note that only two parameters (atransmax and arotmax) are needed to configure the dynamic
window. The speed Vtrans is in m/s while the rotational speed is in deg/s. Also the
accelerations refer to meter and degree. With this simple approach, the search space of
possible actions for the next time step ∆t is spanned.

Figure 5.1: Basic idea of the dynamic window approach. In the space of translation and
rotation velocities a small window around the current speed values is defined. Within this
window the optimal next speed pair is searched to be the next actual speed.
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From this window samples are drawn for the next possible actions to take. Normally
these samples are aligned in a regular grid within the window. Now the dynamic window
approach votes for each sample, whether this speed pair is a good one or not. This voting
procedure is done by many so called "objectives". Each objective is asked for each speed
pair for its vote. The voting result is at the one hand a single value and on the other hand
a vote for the acceptability of this speed pair. If one of the objectives tells the dynamic
window, that a certain action is not admissible, the robot is forbidden to execute this
action.
This makes the whole concept of the dynamic window highly flexible and modular (see
[4]). Evaluations are possible, which deals with questions like: does this action reduce
the distance to the target? , do the robot head towards the target after finishing the action?
, is the robots speed appropriate?, is the distance to the next obstacle to small?, could
collisions occur?. For each of these tasks, a single objective could be formulated. We will
discuss a basic set of objectives soon.
The decisions of each objective are expressed by a single scalar value and for each speed
pair all values are summed up weighted (G(Vrot, Vtrans) = α · obj1(Vrot, Vtrans) + β ·
obj2(Vrot, Vtrans) + ... ). Finally the best possible action within the selected window is
chosen over all possible actions and set as the actual action within the defined time win-
dow ∆t. After executing the action the window is centered towards this action and the
process restarts. Key point on action selection is a search for a local optimal solution by
construction an evaluation function.

start point

Vtrans

∆t
∆t

∆t

Vrot

local optimal points

Figure 5.2: A sequence of three window update steps. Per step the optimal action is
selected, which is afterwards the active action for the given time interval. Then the next
best action is selected.

We already stated in the introduction, that our partner MetraLabs delivers a software
framework that is a dynamic window navigator. At this point it should be mentioned,
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that it is possible in this framework, to include own objectives and specify an active set of
objectives during runtime. In such a case the navigation task of the robot can be mapped
to a set of objectives. So our goal is here, to specify and deliver sets of objectives for each
given navigational task.

5.2 Software structure

The software structure of this quite simple. At startup there exists a set of available
objectives, each with an unified interface. By default these objectives are not active. All
objectives are managed by the dynamic window module. The dynamic window module
knows the list of objectives, the current speeds of the robot, a robot model to predict the
trajectories of certain speed configurations and the physical constraints of the robot. Upon
a set tasks, the dynamic window will activate a subset of the available objectives and tries
to fulfill the tasks with this subset. This knowledge is hard coded during design process
and specific for each given task.

robot position

Motion Control

person positionperson position map

task

motion command

Dynamic 
Window

Objective 1

Objective 2

...

Objective n

Planner

Figure 5.3: The software structure of the dynamic window. The main module receives
the task and selects the set of objectives it has to use to fulfill the task.

The input channels the objectives receive are configurable. In a standard scenario, a map
of the whole environment is needed for path planning and obstacle avoidance, and the
global position of the robot as well. We do not consider person detection here, since this
channel is needed by social acceptable navigation only. Note, that objectives could be
complex entities. As shown in Fig. 5.3, an objective could even use a planner to create
the correct functionality.
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5.3 Objectives

Since the navigation framework of MetraLabs is closed source, we will describe here only
the standard objectives of the classical dynamic window approach. Only the objective to
follow a path is also described briefly. As a whole, the described set of objectives enable
the robot to follow a given path.

5.3.1 Collision detection objective

This objective is the main security objective. Here, a trajectory of the given speed pair is
projected over the time interval ∆t, and if a possible collision inside a given local map
is detected, the given speed is marked as "not admissible". A value is not given (or left
constant). Note, that a given pair of Vtrans, Vrot will either describe a circle element or
a straight line. An example of one trajectory is given in Fig. 5.4, where a collision is
detected.

spatial space action space

∆t Vrot

∆t

Vtrans

Figure 5.4: A sample trajectory from the current dynamic window configuration. Here,
the trajectory is a circle element, defined by the time interval ∆t and the collision detec-
tion objective detects a possible collision along that path. In this case the objective signals
an "not admissible"

5.3.2 Distance objective

The distance objective prefers trajectories with the largest distance to drive until a colli-
sion occurs. As stated above, each point pair is either a circle or a straight line. The value
returned by the distance objective is the distance along that line, until an obstacle is hit.
If the trajectory never hits an obstacle, the value is set to a very huge positive number. An
example for one speed pair is shown in Fig. 5.5.
Note, that this time the time interval ∆t is not considered. Here, the trajectory is observed
for an infinite time.
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spatial space action space

dist Vrot

∆t

Vtrans

Figure 5.5: A sample trajectory from the current dynamic window configuration to visu-
alize the distance objective. Here the distance is measured until the robot hits an obstacle.

5.3.3 Heading objective

When driving in a reactive manner towards a given goal, this objective forces the robot to
head towards the goal. The simple idea is, do predict the trajectory for the given speed
pair over the time interval ∆t and take the difference angle Θ to the given goal. The
returning value is simply 180◦ −Θ.
Again, we visualize the idea of the objective in Fig. 5.6.

5.3.4 Speed objective

The last of the classical objectives is the speed- or velocity objective. This is quite easy,
since it only returns a direct linear mapping of the translation speed: α · Vtrans.

5.3.5 Path planning objective

This objective is not a standard objective inside the Dynamic window approach. Instead,
it replaces the heading objective and enables the robot to follow a planned path. During
path planning, a cost function from the target to all known drivable position is constructed,
which the robot should follow by using gradient descent on this cost function.
Here, it is obvious that we simply have to evaluate the predicted position of the robot after
the time interval ∆t and the given speed pair and return the cost function value at that
position. If no planning value is available, since the reached position would be inside an
obstacle, we return that action at "not admissible". We present also an example in Fig.
5.7.
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spatial space action space

Θ

Vrot

∆t

Vtrans

∆t

Figure 5.6: A sample trajectory from the current dynamic window configuration to visu-
alize the heading objective. The relative angle of the robot after the given time interval is
evaluated here.

spatial space action space

Vrot

∆t

Vtrans

∆t

Figure 5.7: A sample trajectory from the current dynamic window configuration to visu-
alize the path planning objective. Here, the value of the planning cost function is returned
for each speed pair.
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5.4 Experiments

It was already mentioned, that MetraLabs provides an implementation of the Dynamic
Window Approach, which supports driving from position A to position B. This imple-
mentation was tested extensively by MetraLabs in several real world implementations
and has today driven several thousand kilometers of distance. We think it is more than
enough to prove the feasibility of this approach.

5.5 Conclusion

To sum up, the driving decision of the robot for an time interval ∆t only depends on the
evaluation function G(Vrot, Vtrans) = α1 ·obj1(Vrot, Vtrans) +α2 ·obj2(Vrot, Vtrans) + ...+
αn · objn(Vrot, Vtrans). What these objectives model, and how many are used, depends
only on the given task. This means, that this approach is able to change the robots driving
behavior just by activating different sets of objectives! This makes this approach highly
modular.

In comparison to the reinforcement learning approach, all objectives are very distinc-
tive and use almost no random elements. This makes this approach very reliable and
predictable. By always using the collision detection objective, the system can easily be
secured, no matter what other objectives decide for the best action. This cannot be guar-
anteed by any learning approach.
But there are of course also drawbacks. By simple adding the voting results of all objec-
tives, there is the danger that to many influences create a very bumpy evaluation function.
The designers have to be careful to use always a minimal set of criteria to solve a task. By
including too many objectives, the system may also become unconfigurable and hard to
handle. Also in the standard implementation no moving obstacles are considered during
trajectory planning and humans are also not distinguished from normal obstacles. The
task of social acceptable navigation will be, to add this extra functionality as a set of
objectives to this approach.
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6 The "Approach User" objective

In the last chapter the principal structure of the Dynamic Window approach was shown.
It was also told, that the standard approach does not support social acceptable navigation
and that this has to be extended within the dynamic window approach. This chapter will
describe the extension for the first task, to approach a user, previously detected by the
person detection module.

6.1 Software structure update

The structure of the dynamic window remains unchanged. Only we add an single objec-
tive, which needs additional input from the person detection and which uses a planning
module and a model of the personal space of the person. The role of these sub-modules
are described in the following parts of this chapter. Note that the following parts are ex-
tracted from our publication to appear in the proceedings of the ICIRA this year ([13]);

robot position

Motion Control

person position map

task

motion command

Dynamic 
Window

Objective 1

Approach User

...

Objective n

Personal
Space

Planner

Figure 6.1: The software structure of the dynamic window, now extended with the ability
to approach a person.

36



ALIAS D6.3

zone interval example situation
close intimate 0.0m - 0.15m lover or close friend touching
intimate zone 0.15m - 0.45m lover or close friend talking
personal zone 0.45m - 1.2m conversion between friends
social zone 1.2m - 3.6m conversion to non-friend
public zone from 3.6m no private interaction

Table 6.1: Psychological definition of the personal space. This space consists of 5 zones,
each supporting different activities and different communication intentions.

6.2 The model of the personal space

Psychologists investigated the human-to-human interaction in public areas very carefully
since the 70s of the last century. One of the foundations and most important publications is
the work of Hall [7],[8], who first introduced the concept of different spaces around a hu-
man being to support different modes of interaction. There is a space for non-interaction,
public interaction, interactions with friends and also an intimate space for interaction with
very close relatives.
By formulating the theory that interaction is also coupled to spatial configurations be-
tween interaction partners, many investigations on this matter have taken place, and it
could be shown that the configuration depends on many aspects like cultural background,
age, sex, social status and person’s character.
The model of the personal space is the key component to approach a person. Similar
to the work of Dautenhahn [3], we also want the robot to approach a person from the
front, but with a slight aberration from the direct front, since most user perceive such a
behavior more comfortable. For this purpose, obviously we need the position and viewing
direction of the person to calculate the configuration of the personal space model. The
space configuration should enable the robot to drive around the person in a comfortable
distance and turn towards the person when a "front position" is reached. Like in [19],
we model the personal space with a sum of Gaussians. The space relative to the persons
upper body direction is separated into two regions: a front-region, which is considered to
be within ±45◦ around the persons upper direction, and a back-region, which is the rest
(see Fig. 6.2).
In both areas we define a distance function to keep the robot out of the user’s personal
zone but within his/her social zone while approaching the person. The function is defined
relative to the persons upper body direction.

a(x, y) =
α

2πσ1

· e
−x2+y2

σ2
1 − β

2πσ2

· e
−x2+y2

σ2
2 (6.1)

The variables α, β, σ1, σ2 describe a classical Difference of Gaussians function and are
set in our case (see Fig. 6.2) to α = 0.6, β = 0.3, σ1 = 2m,σ2 =

√
7m to form a
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0°

90°

180°

-90°

-45°

+45°

x/m

y/m

Figure 6.2: Two regions of our personal space model. The front region is within an ±45◦

interval (in red). The back region is the rest (in blue). Note, that the regions are not limited
in radial extension, like it is done in the illustration.

minimum cost region in a distance of 3.5 meters around the person. The front region is
treated additionally with an "intrusion function" i(x, y). This is also a Gaussian function
and is simply added to a(x, y).

i(x, y) =
γ

2π
√
|Σ|
· e−~xTΣ−1~x (6.2)

Σ =

[
σ2
x 0.0

0.0 σ2
y

]
·
[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

Here the variables σx and σy define an elliptical region, that is rotated towards the needed
approaching direction φ, as seen from the persons perspective. The vector ~x is simply a
column vector (x, y)T . The variables are set to γ = −0.5, σ2

x = 2.9 and σ2
y = 1.1. Only

φ and σx need to be set at runtime to regulate the approaching distance and direction.
All other parameters are constant and are chosen to reflect the properties of the personal
space definition in [7]. So, the final definition of the personal space p(x, y) relatively to
the person coordinates x = 0, y = 0 and upper body pose towards the x-axis is defined as
follows:

p(x, y) =

{
a(x, y) , if 〈x, y〉 in back-region
a(x, y) + i(x, y) , if 〈x, y〉 in front-region (6.3)

To compute the personal space in the real world application each point (x́, ý)T has to be
transformed to the person-centered coordinate system (x, y)T presented here.
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Figure 6.3: The problem of using the personal space directly as an objective function: no
distinct speed decision is possible, when the personal space model is used. Here, several
actions can lead toward the same minimal value. Also, the robot only seeks local minima
within the personal space function.

6.3 Planning with Fast Marching and the Dynamic Window Approach

Up to that point, we have shown how the personal space can be computed, if the upper
body pose of a person is known. We also stated, that this space is used within the Dynamic
Window Approach (DWA). The basic idea of the DWA is to decide in a local situation,
which next action is optimal. The local driving command is only valid for a certain ∆t,
than the next window configuration is evaluated. If the Dynamic Window uses the per-
sonal space directly, it is possible to predict for every speed pair Vrot, Vtrans the trajectory
within the interval ∆t and simply evaluate the value of the personal space at this point,
the robot has reached at that time. This is shown in Fig. 6.3. The minimal value leads
to the most supported driving decision. By using the personal space directly, multiple
driving decision lead to the same minimal value and a single local optimum can not be
guaranteed.

6.3.1 Fast Marching and the cost function

To avoid situations, where no distinct decision is possible, path planning methods are used
to create continuous decreasing functions to get to the optimum by gradient descents. An
excellent planning technique is the Fast Marching method [17], which origins from the
level set methods of single wave fronts and is applied to path planning. The core idea is
to code space as a physical medium, where waves can travel with different speeds. For
example in obstacles the speed is nearly zero, while in free space the speed can be any
feasible speed. By propagating a wave front from the target to the robot, a function of the
traveling time of the wave for every point in space is constructed. The benefit is, that also
fuzzy values, that are not obstacles or free space, can be considered in this simulation and
deform the initial circular waveform. So all we have to do, is to transform the personal
space into a physical "speed-space". We know the minimum of p(x, y) and use pmin to
create a function that is non-negative. High values of the personal space symbolize bad
places to drive to, while low values should be preferred. So we define the speed function
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a) b)

Figure 6.4: From personal space to the planning function. The personal space function in
a) is transformed to create the continuously decreasing planning function b).

v(x, y) as follows:

v(x, y) = 1/ (p(x, y) + pmin + ε)) (6.4)

The variable ε is used to prevent an infinite speed at the minimum point.

6.3.2 Extracting the target region

To navigate with the Dynamic Window, we use local occupancy maps to represent the
surrounding obstacle situation around the robot. In this grid representation, we also have
to rasterize the personal space values p(x́, ý) to merge the costs of the personal space with
the costs of obstacles to create an optimal path. Each planning algorithm has to know the
target, to which state the system has to drive to. Since we have a rasterized personal space,
we are able to easily extract the minimum value pmin(x́, ý). The planning algorithm has
to know the target, to which state the robot has to drive to. This target is the origin of the
wave and each point (x́, ý) with p(x́, ý) < pmin + ε belongs to the target region. Planning
is complete when the traveling wave front hits the cell of the current robot position, and
now the values of the traveling function can be used directly by the dynamic window to
apply a gradient descent. When the robot reaches a small region around the target region
the approaching task is done.

6.4 Experiments

A problem on approaching a person is the estimation of the person’s position and the
associated measurement noise. To test the stability and robustness of the approach, we
investigated three scenarios, two in narrow spaces and one in a large room of our lab. At
this stage, we use a simulator to avoid the problems of person detection, but with real
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Person position Robot final position
Scenario σpers in meter/deg σrob

1(I) (0.4, 0.1) (0.4, 0.1)
1(II) (0.5, 0.1) (0.4, 0.1)
2(I) (0.2, 0.1) (0.2, 0.2)
2(II) (0.2, 0.2) (0.3, 0.2)
3(I) (0.1, 0.1) (0.1, 0.1)
3(II) (0.1, 0.2) (0.1, 0.1)

Table 6.2: Variance of the robot’s final pose and variance of the wait position of the
person

maps to drive within. To investigate the stability of the approaching behavior on a wider
range of positions or sensor noise, the position of the person and the robot was chosen
randomly to approach in a circle around a marked position. The robot and the person
should face towards a given direction each. For each of the three locations, we define two
person positions with different viewing angles and performed ten runs for each position.
So we have a set of six trials with a sum of 60 single runs. The variance of the final robot
position and the person’s position are shown in table 6.2.
From the experimental setup we get uncertainties of 0.1 to 0.5 meters in the person’s rest-
ing position. The question to be answered in our experiments is, how the variance of the
robot’s target position will increase when approaching a person, by knowing the initial
variance of the person’s upper body pose. We also want to know, how the trajectories
variate on the person’s position noise. To do so, we record the trajectory of the robot
and calculate the mean and standard deviation of the final robot position. The results are
shown in table 6.2 and figure 6.5. The average distance from the person is 0.7 meters,
the variance is within the same magnitude as the variance of the person’s pose. So mea-
surement noise is not amplified by this method. Figure 6.5 shows the path and the mean
person position with variance of all six test cases. Scenario 2 shows, how the upper body
pose heavily influences the trajectory of the robot. Scenarios 1 and 3 show, that in narrow
spaces the trajectory has to follow the physical restrictions. The personal space has to be
intruded, if there is no other chance.

6.5 Conclusion

In this deliverable we presented a method, working within the Dynamic Window Ap-
proach, to approach a person by considering his/her personal space. We could demon-
strate, by using a planning strategy, that a stable and reliable solution could be achieved.
Nevertheless the method of extracting the target region could be improved in future work.
We also want to include obstacles into the personal space model, to improve planning
quality and focus on the task of real time replanning, when the person changes his/her
pose while the robot approaches.
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Figure 6.5: Resulting trajectories of the three tested scenarios. Per scenario two different
poses are evaluated by the user (I and II). The mean positions of the user are shown as
black dots, the mean upper body poses as arrows. In each scenario the blue lines denote
the robot’s trajectories corresponding to the first person setup, while the red lines show
trajectories of the second setup. All scenarios show, how the upper body pose influences
the approaching trajectory. Scenario 2 also shows, that the social zone is respected if there
is room to navigate.
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7 Conclusion and outlook

Within this deliverable we have shown the first version of our navigation software mod-
ule. We presented the first results of the basic prerequisite, namely the person detection
and tracking. Here, a major change occurred by changing the fish-eye camera driven in-
put channel toward the Microsoft Kinect device. We could show first detection results of
this channel and the laser-scanner based leg-detector. Future work will focus on efficient
upper body pose detection of the Kinect channel and the fusion of all available detection
channels (face-detection, point cloud detection, range scan detection).

Second, we present a learning candidate to let the robot learn its driving behavior. This
shows up to be a solution, which is very hard to handle (in fact only experts could have
done it), and which leads to a specialized solution for all given navigation tasks. A secure
and predictable behavior could not be guaranteed, although this approach is the intellec-
tual more interesting one. Within the ALIAS project we will not further investigate this
approach.

Finally, we showed the framework of the dynamic window, which is already supported by
our project partner MetraLabs. The Dynamic Window Approach could be handled very
modular in software structure and the pure reconfiguration of used objectives is sufficient
to change the robots driving behavior. The selection of this approach is the more natural
choice to use within the ALIAS project.

After this decision was done, we started to develop an objective for approaching a user.
First results where shown here and we could successfully place a publication on this issue
[13]. We will do more experiments on this issue this year.

Up to now, we have focused on the interaction part of social acceptable navigation. In the
next year of the project, we will focus more on the aspects of social acceptable navigation
when no interaction is done. This means we will also implement solutions for observing
a resting person, to give the robot the ability to recognize speech commands or gestures,
while not disturbing the resting person to much. We will also give the robot the ability
to react on a moving person, while not interacting with it, and create a polite behavior by
making room for a person when both parters move, but do not interact with each other.
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