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1 Introduction

The primary objective of the ALIAS project is to develop a mobile robot platform that is
designed to assist elderly users and people in need of care to continue independent living
with minimal support from carers. The main functionalities of the robot platform will
include the ability to interact with users, monitor their well being and provide cognitive
assistance to them while using social networks and other communication platforms in
daily life. In these situations, the functionalities are supported by the ability of the robot
to move autonomously and also focus during the navigation on persons within its field of
operation.

Since the project is now about to end in nearly four months, the purpose of this deliverable
is to sum up all developed navigation modules with the current status of development, as
well as the state of the person tracker. In former deliverables we described how to politely
approach a person [11], how to politely avoid a person, and how to observe a person in
an unobtrusive manner [12]. Also, we focused on the ability of the robot to be steered
remotely in a safe fashion. All these abilities will be summarized in this deliverable
with all updates developed since the previous deliverables. Additionally, we began to
investigate the task of autonomous map building, since this is a very useful feature for the
robot to get installed into new environments.
This deliverable is structured as follows: in chapter 2 a short overview of the current
navigation system with all its modules is given. In chapter 3 our method to approach a
person is given with a set of small updates. Afterwards, in chapter 4 the approach to avoid
a moving person is described, while in 5 our approach on finding a good observation
position is shown. Here, most improvements are done. The chapter 6 describes briefly
the mechanism of remote controlling the robot and in chapter 7 the state of autonomous
exploration and the current state of the person tracker are shown. The deliverable ends
with chapter 9, where the deliverable is summarized.
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2 System Overview

This chapter presents an overview of the navigator structure as shown in figure 2.1. The
navigation core is defined by the motion controller, which implements the so called "Dy-
namic Window Approach" [6], which was extended by MetraLabs to allow a more modu-
larized architecture (see [5]) by switching "objectives" on or off. In the dynamic window,
a set of possible next motion commands is evaluated by voting for each command by the
set of objectives. By switching objectives on or off, different tasks could be realized. So,
different driving behaviors could be realized by the same controlling mechanism by just
using a different set of objectives. The navigation behaviors could easily switch during
runtime operation. But to navigate safely a set of requirements has to be fulfilled, which
is namely the ability to localize the robot in a given map and to build such a map. Both
aspects are described in the next section.
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Figure 2.1: The basic modules of the navigation system are shown in red and are provided
by MetraLabs. The blue parts are created by IUT. Note, that modules with a switch could
be turned on and off during runtime. The full control over the navigation resides within
the dialog manager. This deliverable will give an overview over all parts of the navigation
system.

2.1 Navigation requirements: mapping and localization

To safely navigate a robot in its environment, the robot has to know its position within
the operation environment, which requires the knowledge, how the environment looks
like. This is stored in a map, which the robot can use during navigation. It is in fact very
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problematical to build such a map, since the robot could only know its position with the
help of a map and a map could only be estimated with a sequence of known positions. This
is a chicken and egg problem. What happens, if the estimation of the sequence of known
positions is done in an naive way, is shown in Fig. 2.2. So, the problem of building a map
is in fact an estimation problem which estimates the current robot position and builds
with the sequence of estimated positions and the gathered sensor information a consistent
map at the same time. This problem is widely known as the simultaneous localization and
mapping (SLAM) problem. There are numerous solutions for this problem available. We
use two options to build a map. Option one is a simple manual building of the map, where
the user defines a set of reference points, where the robot is driven to pre-known absolute
positions. So, the problem of finding a set of correct robot locations is simple avoided.
The results of this mapping approach simply depends on the correct measurement of the
reference points and the correct placement of the robot at these points.

Figure 2.2: The problem of map building: by measuring the robot’s position with only
wheel spinning or gyroscopes, the resulting track is clearly wrong (left side). A SLAM
problem has to be solved to get the correct map (on the right).

The second option is know as GMapping, as proposed by Grisetti [7]. It is open source
code and could be used to truly solve the problem of synchronous localization and map-
ping. For most of our experiments and user trials it was sufficient to use the first simple
handmade approach, since we do not have very complex environments. Anyhow, to get
the navigation system set-up in an automatic fashion, the second approach is required and
has to be extended by an autonomous exploration behavior. During the last period of this
project we focus on the aspect of an exploration behavior of the robot (see chapter 7).
The localization is simple. Monte carlo state estimation is used to match the current sensor
information from the laser with the map. With its sequential estimation with respect to
the previous state distribution this method is relatively stable. Here, again open source
software is used, known as AMCL 1.

1www.ros.org/wiki/amcl
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This should conclude the basic requirements of map building and localization. Both as-
pects where not part of the development work in ALIAS and are mentioned only to give
a complete overview of the system. In ALIAS, we use state-of-the-art methods to solve
on the one hand the map building problem and on the other hand to localize the robot
within that map. The current robot pose as well as the environment map allows the robot
to move. Without both aspects, a useful and goal driven mobile behavior is not possible.

2.2 Navigation core: different behaviors

As stated above (and shown in Fig. 2.1), the core of the behavior generating aspect of
navigation is controlled by the dynamic-window motion controller and the set of active
objectives. The configuration of the navigator is changed by the application controller, or
in our case, by the Dialog Manager. Also, the navigation task is given by the application
(e.g. drive to a place, observe someone, be remote-controlled) and it has to be assured,
that the navigator configuration and the given task corresponds to each other.

The module of the motion controller as well as the tuple of the path-following and the
obstacle avoidance objectives have been developed by MetraLabs. We integrated our soft-
ware into the provided system. During the development of ALIAS the middle ware for
the navigation system also switched from the former blackboard based approach towards
a point-to-point data transfer approach. All software modules where migrated towards the
new middle ware called MIRA 2. This middle ware was developed by IUT and MetraL-
abs outside the ALIAS project and is available via an open source license. The interfaces
towards the dialog manager where left unchanged, so the migration is transparent towards
other partners.

The idea of the dynamic window is very simple. The state of the robot is defined by its
current position and the current driving speed of the robot. Now, a set of feasible velocities
for the next motion step is evaluated. For each speed configuration a set of "objectives"
should give their vote, if this configuration supports the given task or not. And so, the
set of objectives can control the robot behavior. For example, during classical navigation
only the objectives for following a path and avoiding obstacles are active. The remaining
objectives have to be deactivated. The objective for following a path uses a path planning
algorithm in the background to be able to vote for feasible driving commands. The col-
lision avoidance objective only reacts on the local perceived obstacle situation and does
not consider which driving command leads towards a goal. Only the combination of both
objectives enables the robot to drive towards the goal.

One main navigation aspect of ALIAS is, to enhance the set of objectives to enable differ-
ent robot behaviors like approaching a person or remote control the robot. Further details
will follow in chapters 3 and 4.

2 www.mira-project.org
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2.3 Additional navigation modules: observe a person, remote control and
exploration

The only module that does not belong directly to the navigator core is the observation
module, the GUI for remote controlling the robot at the non-robot side of the use case,
and an application to explore the home environment in order to autonomously build a
map. The observation module only has one task: to find a good observation position. It
does not cause the robot to drive to this position directly, but leaves the position to the
dialog manager to use it if needed.
The GUI for the remote control process simply shows the robot’s position within the
map and adds two camera images to the user interface. It acts as a front end to the
remote controller and sends back drive commands, which the robot could (but not have
to) execute. This is the only direct connection to the navigation module.
The exploration module is a stand-alone application, which does not interface with any
other module from the ALIAS architecture. Currently, this application is in an early
prototype state.
Further details will follow in chapters 6,5 and 7.
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3 Approaching a person in a social acceptable way

In the previous chapter the idea of the Dynamic Window approach has been presented.
Since social acceptable navigation is not supported by the original approach we had to
extended it (see figure 3.1). This chapter describes the extension for the first task, to ap-
proach a user, previously detected by the person detection module. For a more detailed
description of this approach the reader should refer to deliverable D6.3[11]. Here, the
main ideas are summed up and shown in short.

First of all we rely on the findings of psychologists and their personal space model. This
defines a kind of protection area around each person, where the robot could only intrude
from the front. Afterwards the used planning method is describes shortly.
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Figure 3.1: the "approach person" software module within the navigation architecture.
This module is directly linked to the navigation core and extends the capabilities of the
robot to approach a person.

3.1 The model of the personal space

Psychologists investigated the human-to-human interaction in public areas very carefully
since the 70s of the last century. One of the foundations and most important findings is the
work of Hall [8],[9], who first introduced the concept of different spaces around a human
being to support different modes of interaction. There is a space for non-interaction,
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zone interval example situation
close intimate 0.0 m - 0.15m lover or close friend touching
intimate zone 0.15m - 0.45m lover or close friend talking
personal zone 0.45m - 1.2m conversion between friends
social zone 1.2m - 3.6m conversion to non-friend
public zone from 3.6m no private interaction

Table 3.1: Psychological definition of the personal space. This space consists of 5 zones,
each supporting different activities and different communication intentions.

public interaction, interactions with friends and also an intimate space for interaction
with very close relatives.
By formulating the theory that interaction is also coupled to spatial configurations be-
tween interaction partners, many investigations on this matter have taken place, and it
could be shown that the configuration depends on many aspects like cultural background,
age, sex, social status and person’s character.
The model of the personal space is the key component to approach a person. We want the
robot to approach a person from the front, but with a slight aberration from the direct front,
since most user perceive such a behavior more comfortable. For this purpose, obviously
we need the position and viewing direction of the person to calculate the configuration of
the personal space model. The space configuration should enable the robot to drive around
the person in a comfortable distance and turn towards the person when a "front position"
is reached. Like in [15], we model the personal space with a sum of Gaussians. The space
relative to the persons upper body direction is separated into two regions: a front-region,
which is considered to be within ±45◦ around the persons upper body direction, and a
back-region, which is the rest (see Fig. 3.2).
In both areas we define a distance function to keep the robot out of the user’s personal
zone but within his/her social zone while approaching the person.
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The variables α, β, σ1, σ2 describe a classical Difference of Gaussians function and are
set in our case (see Fig. 3.2) to α = 0.6, β = 0.3, σ1 = 2m,σ2 =

√
7m to form a

minimum cost region in a distance of 3.5 meters around the person. The front region is
treated additionally with an "intrusion function" i(x, y). This is also a Gaussian function
and is simply added to a(x, y).
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Figure 3.2: Two regions of our personal space model. The front region is within an ±45◦

interval (in red). The back region is the rest (in blue). Note, that the regions are not limited
in radial extension, like it is done in the illustration.

Here the variables σx and σy define an elliptical region, that is rotated towards the needed
approaching direction φ, as seen from the persons perspective. The vector ~x is simply a
column vector (x, y)T . The variables are set to γ = −0.5, σ2

x = 2.9 and σ2
y = 1.1. Only

φ and σx need to be set at runtime to regulate the approaching distance and direction.
All other parameters are constant and are chosen to reflect the properties of the personal
space definition in [8]. So, the final definition of the personal space p(x, y) relatively to
the person coordinates x = 0, y = 0 and upper body pose towards the x-axis is defined as
follows:

p(x, y) =

{
a(x, y) , if 〈x, y〉 in back-region
a(x, y) + i(x, y) , if 〈x, y〉 in front-region (3.3)

Version update

In the first version of the approaching objective the minimum point of the personal space
function was chosen to be also the goal, where the robot has to drive to. In practice this
idea is not optimal, since often this place is not reachable by the robot, since a table or a
chair could block this position. For that reason we use a bimodal density function, which
has the exact similar structure than i(x, y) with the angle φ and −φ. So we draw samples
from the function iφ(x, y) + i−φ(x, y) until a cell is found, where the robot is able to drive
to. This cell is set to be the driving goal for the robot.

3.2 Fast Marching and the cost function

To enable the robot to follow a cost optimal path along the defined cost function, path
planning methods are used to create a continuous decreasing function to get to the goal

12
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a) b)

Figure 3.3: From personal space to the planning function. The personal space function in
a) is transformed to create the continuously decreasing planning function b).

position by gradient descent (see Fig. 3.3 for cost function on the left and the resulting
planning function on the right). An excellent planning technique is the Fast Marching
method [14], which origins from the level set methods of single wave fronts and is applied
to path planning. The core idea is to code space as a physical medium, where waves can
travel with different speeds. For example in obstacles the speed is nearly zero, while in
free space the speed can be any positive non-zero value. By propagating a wave front from
the target to the robot, a function of the traveling time of the wave for every point in space
is constructed. The benefit is, that also fuzzy values, that are neither obstacles nor free
space, can be considered in this simulation and deform the initial circular waveform. So
all we have to do, is to transform the personal space into a physical "speed-space". High
values of the personal space symbolize bad places to drive to, while low values should be
preferred. So we define the speed function v(x, y) as follows, where pmin is the minimum
of the personal space function:

v(x, y) = 1/ (p(x, y)− pmin + ε)) (3.4)

The variable ε is used to prevent an infinite speed at the minimum point. The function
v(x, y) is than used by a standard fast marching planner (see [14]) to extract a path, which
the robot can follow.

3.3 Conclusion

In this chapter we summarized a method, working within the Dynamic Window Ap-
proach, to approach a person by considering his/her personal space. We could demon-
strate, by using a planning strategy, that a stable and reliable solution could be achieved.
This approach appears to be stable and is finished within the ALIAS project.
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4 Avoiding a moving person during driving

In this chapter, an approach is presented, which on the one hand predicts the movements of
persons in a very simple way, and on the other hand uses the predicted movements to plan
a motion path, which avoids the moving person. The goal of our development was an early
avoiding behavior of the robot, when the robot passes a person. This should increase the
acceptance of the robot, when operating in private homes, and signal a "busy"-behavior
towards the users. Within the ALIAS project, the proposed method is applied as an alter-
native planner to the standard planner and therefore transparent to all other modules (see
Fig. 4.1).
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Figure 4.1: the "avoid person" software module within the navigation architecture. This
module is directly linked to the navigation core and completely replaces the classical path
planning module. So, only one of both modules could be active during operation.

4.1 Introduction

In our work we want to emphasize the case of human-robot interaction, when the robot
does not want to interact with a person. In semi-public environments, like nursing-homes
or hospitals, this is very often the case. For example, when the robot has to drive to its
charging station an interaction with a passing person is not wanted. In such cases, the
robot has to signal its busy state. In our work, the spatial distance from Hall is used
(see chapter 3), which corresponds to "non interaction", and which therefore represents
a meaningful distance for a human being. All persons (or robots), that keep a distance
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t0

t1

t2

a) b)

Figure 4.2: the idea of the approach: the robot should be able to politely pass a moving
person. To do so, the person path is predicted (see a)) and the personal space of the person
is used in a spatio-temporal planning process to compute a feasible path. In b), a planning
wave is propagated from the robot origin towards the goal (blue cross). This wavefront
could be deformed from the obstacles as well as from the moving personal space from the
predicted trajectory.

above this threshold, are interpreted as potential non-interaction partners. In this software
module, we use a simple mathematical model of the personal space, to allow the robot
during the path planning phase to take into account the predicted motion of an observed
person. A non-intrusive path towards a predefined goal, which does not touch the personal
space of a person, is planned if enough space is available.

Presented approach

Our approach uses a modified version of the Fast Marching Method (see [14]), to prop-
agate a wavefront into the environment. The passing times of the wavefront could be
afterwards used to extract an optimal path. The passing time of the wavefront is deter-
mined by physically correct simulation of the wave, and is directly related to the physical
abilities of the robot, like maximum traveling speed, and the restrictions of traveling speed
coming from the static and dynamic environment. The static restrictions are the obstacles.
The dynamic aspects of the environment are considered to be the predicted motion tra-
jectories of persons (and their personal space). As stated before, we use a potential field
method to predict the trajectory of the moving person. A brief overview of the key idea
of the presented approach is shown in figure 4.2.
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4.2 Integration into the navigation software system

This module completely replaces the classical (static) path planning approach. For this
reason it is also designed as an objective with path planner included. The only modi-
fication is the usage of time during the planning process and the additional short term
prediction of person motion. The mechanism to follow the planned path is exactly the
same as in the standard module. The idea is simply to choose the particular action (rota-
tional and translational speed), which best follows the gradient of the resulting navigation
function.

4.3 Prediction of the person’s trajectory

In this section, the prediction method of the person trajectory is presented. We propose a
very simple, physically inspired model, also known as potential field. This model is very
often used in robot navigation to avoid obstacles or approach a target [10, 13]. However,
here it is used to predict near future person movements. The key idea is to model the
environment as a set of point like electrical charges, which create an electrical field. This
field could affect other charges by applying a force towards them. Two forces are modeled
to predict the motion trajectory. On the one hand, the pushing forces of the obstacles are
used, so the person does not collide, and on the other hand, the pulling forces of a virtual
target line in front of the person are modeled.

4.3.1 The Potential Field

To compute the vector field of forces, a grid based world representation is used. If a cell
contains an obstacle, a negative charge is defined there. A free cell does not contain any
charge. The person itself represents also a negative charge and is attracted by a virtual
line of positive charges in the current motion direction of the person. An example setting
is shown in figure 4.3. To extract the impact of all charges, the definition of the electrical
field is applied to compute the resulting force. For a given set of charges in positions ~xi,
the field at a position ~x is defined as:

~E(~x) =
n∑
i=0

Q−i ·
~x− ~xi
|~x− ~xi|3

(4.1)

Note, that the resulting force on a negative charge is proportional to the vector ~E(~x).
For the static part of the environment, in each free cell the vector of the field could be
preprocessed. Also, the moving person is attracted by a line of positive charges, which
is always placed in front of the person. So, the resulting force is the vector sum of a
force towards the current motion direction and a disturbing force, sourced by the obstacle
configuration:

~F (~x) = Q−( ~Eobs(~x) + ~Etarget(~x)) (4.2)
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Figure 4.3: this image shows
the resulting vector field ~E(~x),
which is sourced by the neg-
ative charges of the obstacle
cells. The resulting force on
the moving person is defined
by two components. The push-
ing field Eobs of the obstacles
(blue) and the pulling force
Etarget of the virtual target line
(red). This results in a field
vector Eres (light blue), which
is proportional to the applied
force.

The idea of predicting the trajectory is, to simulate the movement of a person by consid-
ering the force ~F (~xj) in the currently predicted position ~xj and create the next motion
vector and position. It is easy to understand, that such an approach only needs a map of
the current environment, a valid person position and a valid walking direction to provide a
sufficient prediction of the person’s trajectory. Note, that this method does not give good
results on long term trajectories! In this case statistical methods should be used, which
need a rather large training set of recognized trajectories.

4.3.2 Motion Prediction

We "predict" the motion of a person as if the person would be a charged particle inside
the previously calculated electrical field. If the motion of a charged particle within the
resulting force field should be processed, the well known momentum equation could be
used for that: m · ~vt+1 = m · ~vt + ~F · ∆t. Here, m denotes the mass of the charged
particle, ~vi denotes the speed at time i, and ∆t is the time interval for one simulation step.
Reformulated to ~vt+1 = ~vt + ~F/m · ∆t, it could be seen, that the mass influences the
update of the speed. With a huge mass, the speed update is fairly slow and could lead to
collisions. This changes, when the mass tends to small values. Since a collision free path
of the person should be constructed, the mass is set to zero and only an approximation of
the momentum equation is used to update the current person speed:

~vt+1 = |~vt| ·
~F

|~F |
·∆t (4.3)

By re-defining the momentum equation, only the direction of the person prediction is
influenced by the potential field and the absolute value of the person speed is left constant.
The trajectory of the moving person is calculated by sequentially applying equation 4.3.
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The predicted person’s path is used for the robot’s motion planning.

4.4 The Adapted Fast Marching Planner

As stated before, the Fast Marching Method approach from Setian [14] is used for robot
path planning. It is executed on a regular grid, where each grid cell contains a cost value
that physically reflects a speed, at which a virtual wavefront is able to travel through this
cell. Near zero values are assigned to obstacle cells, whereas high values are assigned to
free space. In our planner, the main idea is to evaluate the speed, the waveform can travel
through a cell element at the time, the cell is reached by the wavefront. The wavefront
thereby represents all positions, the robot is able to reach at that given time.

4.4.1 The Fast Marching Method

Before the actual planning process starts, the given map is divided into obstacle and non-
obstacle cells by a simple threshold operation. Afterwards, the map is dilated by the radius
of the robot, so that obstacles now appear larger and a point-like robot can be assumed.
This setting defines a static velocity value for each cell, which is vmax in free space and
linear interpolated towards zero, when the cell is near an obstacle.

a)
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x ,T
0 0 x ,T

1 1

x ,V(x)i

r 0 r 1

s 0

s 1
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d 
T=r /V i i

b1) b2)

t t+∆t

∆t

t+2∆t

Figure 4.4: in image a), the details of the interpolation of one cell element of the wave-
front are shown. Blue values are the given ones, while black values are computed. The
red values describe the final step of interpolation, where from the virtual wave sources s0

or s1 the passing time of the wavefront is calculated. On the right side b) a full simula-
tion step is shown, where the personal space intersects the wavefront. Note, that only the
blue elements of the wavefront investigating the current speed configuration, while the
computed values remain unchanged. The wavefront is only updated with the current con-
figuration until the elements reach the simulation time t+ ∆t, shown in b1). Afterwards,
the speed configuration is updated to t + ∆t and the propagation of the wave runs until
t+ 2∆t is reached (see b2)).
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Fast Marching proposes a very simple numerical solution to the so called Eikonal equa-
tion problem, where an ever expanding closed curve is propagated over time. The wave
starts from a single point (e.g. S0 from figure 4.4 a) ) and expands to neighboring points
by using grid cell centers, which are currently part of the wavefront. All expanded points
of the waveform are added to an open list, sorted by the interpolated travel times. Sequen-
tially, the elements of the open list with the smallest traveling time values are expanded
and removed from the list afterwards, until no expandable cells remain. In this way, the
wavefront expands slowly over all points. Each expansion step is done by interpolating
the wavefront for the currently observed cell element ~xi. For the interpolation of the cell
element, the traveling times T0, T1 and positions ~x0, ~x1 of the two neighboring elements
with the shortest traveling times are needed. Also the current valid speed of that cell v(~xi)
has to be known. In the first step, the positions ~s0, ~s1 of possible sources of the wavefront
are calculated:

r0 = v(~xi) ∗ T0

r1 = v(~xi) ∗ T1

sx = (d2 + r2
0 − r2

1)/2d

sy = ±
√
r2

0 − s2
x

~s0 = 〈sx ; +sy〉
~s1 = 〈sx ; −sy〉

Here, d is the distance between ~x0 and ~x1 and defines the X-axis of the solution. As seen
in figure 4.4a), there exist two possible sources ~s0, ~s1 of the wave origin to reach ~x0 in T0

and ~x1 in T1. The most distance source to our point ~xi is chosen, since the point ~xi would
already have been interpolated if the nearest source is correct. With the correct source ~sj ,
the interpolation of the wave crossing time at position ~xi is trivial:

Ti =
|~xi − ~sj|
v(~xi)

(4.4)

Note, that for very small values of the traveling speed, the passing time Ti will become
very large and such elements of the open list are expanded later. This is the case when the
wave hits an obstacle cell or the personal space in our case.

4.4.2 Adaptation for Predicted Motions

To adapt the described interpolation method to time variant traveling speeds of v(~xi, t), a
number of changes are necessary. First, the planning direction is reversed. Normally, a
path from the target position to the current robot’s position is planned. Since the traveling
times of the wave have in our case a physical meaning, and to fuse the motion prediction
with the planning process, the path is planned from the robot towards the goal. This
means, the current robot’s position is the source of the wavefront. Second, the fusion of
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time slices and space is the fundamental change in wavefront propagation. Hereby, the
system starts from a time t0 and updates the prediction of the person movement as well as
the propagation of the wavefront in time intervals ∆t. In Fig. 4.5 an example force field
for person motion prediction is shown. The obstacle and world configuration are assumed
to be static in this time interval, and the wave traveling is continued only in this short
interval. This means for the n-th planning step, that only those elements from the open
list are expanded, whose travel times are smaller than to + n · ∆t and for the expanded
elements, the dynamic speed function v(~xi, t0 + n ·∆t) is evaluated. A sketch of the idea
is shown in figure 4.4.

4.4.3 Following the Calculated Path

The planning is complete, if the wavefront has reached the predefined target cell. Note,
that our approach also calculates when the target is reached. At this point each cell, passed
by the wavefront, contains the passing time. The needed driving path is calculated by per-
forming a gradient descent from the target cell towards the robot’s original position. The
robot has to follow this path as good as possible with the defined speeds, also calculated
during the planning process. Note, if the person deviates to much from the predicted path
in space and time, a replanning has to be performed. This is triggered, if the three dimen-
sional Euclidean distance |(xpredp − xobsp ), (ypredp − yobsp ), (tpred − tobs)| is above a certain
threshold (in our case 2.6 meters).

4.5 Experiments and Results

b)a)

Figure 4.5: in a), an example of the force field is shown, which is used for motion predic-
tion. In b) the function of the passing times of the wave is shown. From this function the
resulting path is created by gradient descent from the target towards the robot’s position.
It can be seen, that the traveling time raises, when the wavefront hits the personal space
of the person. A detailed view of that part of the function is shown on the right.
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During the experiments, two scenarios with different characteristics where evaluated. In
the first scenario, a person moves on a straight line in the narrow space of the test area (see
Fig. 4.6) and the robot has to plan a path which crosses this line. In the second scenario,
the person meets the robot in a wide corridor (see Fig. 4.7). The person moves also in a
straight line and the robot should approach a goal by driving in the opposite direction and
also has to plan a path to avoid the person. Both scenarios are based on real world map
data of our institute. In both scenarios the personal space is propagated correctly forward
in time, while the wavefront passes these regions. So, in both cases the personal space of
the moving person slows down the wavefront and guides the wavefront around a region of
space in front of the person, which is the main difference towards a static path planning .
When the goal is reached by the wavefront, gradient descent is used to extract the optimal
path.

t=1s t=2s t=4s t=8s

Figure 4.6: propagation of the planning wave in a narrow space. The robot starts on the
left side and has to reach the goal on the lower right. The person is located at the bottom
(multiple bright circles) and walks through the room. The wavefront travels through the
room until the target is reached and avoids the personal space. The final path is shown as
a dashed line, whereas the planned path without a person is shown as a solid line.

To provide a practical system, the robot should be able to plan this path much faster
than real time. In fact, it must be possible to plan the path in a fraction of a second for
multiple seconds beforehand. The planning of five seconds of motion can be done in 350
milliseconds.
The calculation of the force field ~Eobs is constant for the given map and is done once
before the algorithm starts. It took 10.3 seconds for the given map of the lab building
to build the vector field. For the experiments a standard dual core mobile processor with
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t=2s t=6s t=10s t=14s

Figure 4.7: propagation of the planning wave on a floor. The robot starts on the left
side and has to reach the goal on the upper right. The person is located at the right side
(multiple bright circles) and walks through the corridor towards the left. The wavefront
travels through the room until the target is reached and avoids the personal space.

2.66 GHz was used.

4.6 Conclusion

At this stage of development, the proposed module is used as the default planner within
the ALIAS system. Even if the prediction of the person motion trajectory is not working
correctly, this system creates at least the same results as a static planner and improves
the motion plans, if the prediction works correctly. The presented planning approach is
stable within the ALIAS project, and could be considered as finished. Only the person
prediction part needs more fine tuning on the construction of the artificial electrical field
to minimize the phenomenon that the simulated person get stuck into a local minimum.
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5 Observing a person in an unobtrusive way

Usually, in mobile robotics the robot has to deal with a lot of tasks like interacting with
a person, driving to its charging station, or building a map of its environment. But what
happens, if the robot just has to wait and thereby still has to react on user commands?
During all-day-operation of the ALIAS robot, the robot has to find a good position where
the user can still be observed, and the robot does not disturb the user’s activities. In this
chapter, we present an approach, how to find such a position by solving an optimization
problem using a particle swarm optimizer, and we show results for that. This method can
be used to "park" the robot at a feasible position by using the position provided by this
software module.
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Figure 5.1: the observation software module within the navigation architecture. Note, that
this module is separated from the navigation core, since it only emits a sequence of "drive
to position" tasks. The module is controlled by tasks, emitted from the dialog manager.

5.1 Integration into the navigation software system

The module for finding a good observation position is separated from the navigation core.
It can be triggered by the dialog manager and produces as a result a position, where the
robot should drive to. The proposed position is updated continuously until the module is
deactivated by another dialog manager command. This structure is shown in figure 5.1.
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5.2 Formulation of the optimization problem

The observation position has to consider a variety of criteria. To find an optimal position
to observe a person, a set of criteria has to be evaluated at each valid sample of the search
space. The search space contains the position ~x = (x, y, z) of the robot and the view di-
rection φ. We assume the robot can only move at the ground plane, so the z component is
fixed by the robots height. Also, the pitch and roll angle of the camera are fixed, and only
the yaw angle φ has to be considered. From this three dimensional search space the opti-
mal point is chosen as the best observation position. Since the problem is formulated as
an optimization process, we have to consider at the one hand the bounding conditions, and
on the other hand the optimization function. Both aspects are described in the following
two sections. Additionally, the optimization algorithm is briefly described afterwards.

5.2.1 Boundary conditions

The solution of the optimization process depends on the boundary conditions that exist
when the process is started, and may even change during the process. In fact, these
conditions reflect the knowledge we have about the respective environment. On the one
hand, this is the map m(~x) of the environment, which gives information about known
obstacles, and on the other hand it is the position ot of the person to be observed at a
given time t. Additionally, we also include knowledge where the person usually sits,
stands or lies.
This is done by providing a density function p(o = ~xi) to give a probability that a per-
son can be observed at a certain point ~x in the home environment. Figure 5.2 shows
all boundary conditions summarized. The person occupancy density function is approxi-
mated by building a histogram with bin size w over an infinite time interval to collect user
observations.
As an update to the first version of the observation module the histogram of the person
density is now built only in the 2D space, where the data from the person tracker are
collected. The histogram is now estimated online and in real time over a long time period.
Since we operate on a time variant optimization problem, we choose an optimizer suit-
able for dynamic optimization problems, namely the particle swarm optimization (PSO)
technique [4].

5.2.2 The optimization function

The optimization function f reflects the different criteria to be considered and fuses these
criteria into a single function. It is a function over the optimization space S = {~x, φ},
where ~x ∈ <2, φ ∈ <. There are two hard criteria to reflect physical properties to con-
strain the search space and mask out impossible search positions. These are the driveabil-
ity d(~x), and visibility of the person v(~x, φ). Both functions d and v are binary functions.
Moreover, a set of soft criteria ci has to ensure: (i) an appropriate distance to the user
(cdist), (ii) the ability of the sensor to detect a person (cdet), (iii) to perceive the person
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Figure 5.2: the boundary constraints of the optimization problem: the obstacles within the
environment, the current person position ot, the person occupancy distribution p(o = ~x)
and the position of the camera on the robot.

from the front (cfront), and (iv) how many places of the person’s occupancy distribution
are observable (cpodf ). An example of all functions is shown in figure 5.3. Since these
criteria are no hard criteria, an optimal compromise between them has to be found. These
criteria are fused by the superposition principle. So the resulting optimization function is
defined as follows:

f(~x, φ) = d(~x) · v(~x) · [α1 · cdet(~x, φ) + α2 · cdist(~x)

+α3 · cfront(~x) + α4 · cpodf (~x, φ)] (5.1)

Most criteria are simple, and at this point we will take a closer look only to cpodf , the
criterion of the person’s occupancy distribution. Since positions are already masked out,
where the person could physically not be seen (using v(~x) ·d(~x)), it is possible to observe
the person from the subset of all remaining positions Xv = ~x1...~xn. Now the question is:
how many places where the person usually is, are observable by each possible observation
pose ~xi? A view cone Xf is cast by the camera into the home environment, depending
only on the rotation angle of the robot and the position inside Xv. The idea of cpodf is now
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Figure 5.3: hard and soft criteria. The hard criteria mask out the possible search space,
and particles (shown as orange dots) are only placed in the remaining region. The soft
criteria determine the optimum and are summed up to form the optimization function.
Note, that the soft criterion of view direction is not shown here.

to integrate all observable points ~x from p(o) , where ~x ∈ Xf and where p(o) > 0:

cpodf =

∫
~x

p(o = ~x) , where ~x ∈ Xf (5.2)

This function should guarantee that the robot places itself at a position where most of the
places the person usually rests at, are observed.

5.2.3 Particle swarm optimization

The optimization problem is simply to find the values of (~x, φ) that maximizes the out-
put of f(~x, φ). Our solution to the defined optimization problem uses the particle swarm
optimization (PSO) approach. It is a well known technique (see [4], [3]) to find a global
optimum by sampling from a defined optimization function, and uses a mixture of di-
rected and random search within the search space to iterate towards the optimum.

Each particle contains a state, which is part of the current optimization space, and a
speed vector also placed within that space. In our case one particle contains a position
(x, y) ∈ Xv and a view direction φ. Note, that we only optimize over (x, y) and chose
φ to view directly towards the current person position ot. Thats why we only need speed
components of the particles in x and y direction, namely vx and vy. Each particle is de-
fined by p[i] = {~x[i] = (x, y), φ[i], ~v[i] = (vx, vy)}. In the first step, particles are randomly
initialized only in those cells, where all hard criteria are fulfilled. The key idea behind
the particle swarm optimization is, that particles tend to search near positions where good
results for the optimization function are already measured. The speed component hereby
enables the particles to overcome local minima and circle around good positions.
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5.3 Optimization Criteria

In this section, we will describe in detail all functions which are part of the optimization,
and we also show the representation of the environment.

Xv

Xf

AA

BB

particle

person
p(o|x)

Figure 5.4: in red: the set Xv of all positions where the person is visible. From all other
positions the person is covered by an obstacle. Particles only exist in Xv. In blue: the
view coneXf which a particle can observe. Note thatXf defines the area where p(o = ~x)
is integrated: in this case A+B.

5.3.1 Data structures

Since our early experiments show that the 3D case is very slow to compute we focus
on modeling our environment in 2D. The used occupancy map is created by a separate
mapping process, sketched in chapter 2. The person occupancy probability distribution is
a simple histogram, where each cell counts the number of points belonging to a person,
which are normalized by all observed person points. These person points are collected
from the output of the person tracker.

5.3.2 Realization of the single criteria

Driveability

The first criterion we discuss is d(~x). Here, cells are selected which could be reached
by the robots camera. This function is either zero, when the cell is not reachable, or one
when this cell is reachable. The map is dilated by the robot radius, to assume a point-like
robot. Then we use simple flood filling to get the set of reachable cells.

Visibility

Our next function is the visibility criterion v(~x). Although this function is independent
from d(~x), it makes sense to only consider points which are inside Xv, since d(~x) and
v(~x) are multiplied. So the task is to check every cell from the previous step, if the person
could be seen from that position. This is done by ray-casting from the current cell towards
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the person position. Here, the set of cells insideXv is reduced. With both functions known
for a given map and a given person position, the particle swarm could be initialized with
regard to Xv.

Sensor distance

The next function is the sensor distance cdet(~x). Since we use the Kinect sensor, the
recognition distance is limited to 3 meters. So, we use the sensor distance ds = |~xi − ot|,
which is the distance from the current cell ~xi towards the center of the person position,
using the parameter smax, which refers to the maximal distance the sensor could observe:

cdet(~x) =

{
1 , if ds < smax − 1

1
1+exp(ds−smax−0.5)

, else
(5.3)

Social distance

The social component is defined in a very similar way. As Hall [9] explains, the social
distance, where persons do not consider to interact with each other, is around 2.5 meters
and above. This is our social distance to make an observed person feel comfortable. The
function to consider this fact is defined as follows, using the parameter σd = 0.5m:

cdist(~x) = e
− (ds−2.5)2

2σ2
d (5.4)

Frontal view

For gesture recognition, face identification and emotion recognition, it is necessary to
observe the user from the front. Thats why we define an angle interval where a good
viewing angle from the front could be guaranteed. The deviation from the person’s view
direction towards the robot’s pose is defined as angle β. With that angle, cfront could be
defined as follows:

cfront(~x) =

{
0 , if |β| > π/2

1
1+exp(|β|−π/6)

, else
(5.5)

Person occupancy distribution

As described in section 5.2, the function cpodf describes, which part of the person occu-
pancy density function can be seen from the given hypothetical robot position into the
given direction (see Fig. 5.4, blue area). This is a time consuming operation, since a
visibility check of the person occupancy density function has to be calculated.
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Updated: When we proposed the optimization technique for the first time, we kept the
person occupancy density function static and measured this function before the actual
optimization started. In the updated version, we estimate the density function online.
Also, we first assumed, that each occupied cell has an infinite height, where the robot
is not able to view over obstacles. This is off course not true, since tables, chairs and
couches could be easily overlooked. To improve that particular point, we now estimate an
elevation map with the help of the 3D Kinect camera (see an example in Fig. 5.5). With
the elevation map, we could improve the results of the 2D visibility check very close to the
results of the full 3D model, but with the difference, that the 3D model is computational
far too expensive and the 2D model could be calculated in only a few seconds.

Figure 5.5: Part of the elevation map of our lab. Here, some tables with chairs are inte-
grated into the map. Red means higher elevation above ground while blue means lower
elevation values. We use this knowledge to check, if a person could be observed from a
certain point.

5.4 Experiments

In this section, we show experiments done for the 2D case. The experiments for the 2D
case where executed by using the 2D occupancy map of our lab (see Fig. 5.6 for the
hard criteria masks and the person distribution). Our experiments where focused on the
stability and the speed of our approach. The found solution produces reliable results by
using 30 particles and 40 iterations in typical home environments and large corridors.
With a variance of 14.5 cm, the found results are sufficient for the real world scenarios.
Here, a 2.16 GHz Intel dual core processor is used, running directly on the mobile robot.
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Figure 5.6: 2D map of our lab environment with the person occupancy density function
p(o|~x) as the original voxel representation, the drivable space from d(~x), and the visible
space v(~x) where the person ot could be observed. Note that ot is not visible here, since
it is covered by the blue voxel elements from p(o|~x). Also, the final observation position
is shown.

The results show calculation times of 5 - 10 seconds, depending on the number of used
cores.

5.5 Conclusion

In this chapter, we have shown an approach, how to observe a person by also considering
positions, where the person usually sits. Therefore, we provide a person occupancy dis-
tribution and use a variety of other criteria. We also plan to include additional hard and
soft criteria towards the optimization problem. One planned hard criterion is, to keep the
line of view from the observed user towards "objects of interests" (like television, clocks
or fish tanks) free from the robot presence. These points of interest should be labeled by
hand into the robot knowledge. Another possible soft criterion is, that the robot should
not place itself on paths, the person usually walks, which means that we simply have to
use the person occupancy density function for that purpose.
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6 Robot Remote Control

6.1 Introduction

In this chapter we will describe our approach to make the robot remote controllable. Note,
that this is a very simple approach and so we will not discuss, what other approaches exist,
since this discussion will not have significant value towards the reader. The need of this
module emerged during the user trials and questionnaires, where the users demanded
the need of some kind of security feature. An exact description, what this feeling for
security means, was not given. So, the consortium decided to enable the robot to be
remote controllable and to send video images towards the controller. It is clear, that only
certified and authorized persons should be able to see those video images. We decided to
use Skype to transfer one video channel and the audio channel of a camera mounted on
the touch screen and transfer an additional video channel from the front camera, to enable
the remote-user to see where to drive to. These configuration was voted best during the
second user trials.
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Figure 6.1: the "remote control" software module within the navigation architecture. This
module is directly linked to the navigation core.

The main task of this module is, to make the robot steerable by a remote person in case
of emergency. How a case of emergency is exactly defined, lies within the domain of the
user inclusion work group of work package one. Here, only the functionality is defined
and implemented. The core ability should be, to control the robot to drive in the defined
direction without collision, and give some obstacle feedback to the remote controlling
person.
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Figure 6.2: The sensor information, transfered towards the remote controlling person.
In blue the Skype application is used to transfer camera images and sound. Red are the
additional channels for the controlling person to be able to localize itself within the home
and also to get an idea of the obstacle situation in the flat. Therefore, the laser data and
the front camera image are transfered.

6.2 Remote Architecture

Since the mathematical background of this task is quite simple, the main challenge here
is the transfer of control data from the remote control client towards the server (on the
robot) and in the other direction the sensor feedback from the obstacle situation from the
server to the client. See figure 6.3 for the definition of the client and server.
We use the AngleScript interface from MetraLabs to exchange the command data and
the laser data between client and server. The skype API is used to transfer audio and
video data from client to server. In the next sections, the details of data flow, and the
mathematical realization of the remote control, are shown.

6.2.1 Remote Client

The remote back end is the client side of the remote control and is designed to work on
every standard PC with network access. At the moment, only the robot or the robot’s user
is allowed to establish a connection to a remote controller. The remote controller can call
the robot’s user but is not allowed to take control over the robot without approval. A Wii
controller is connected to the client PC via Bluetooth and the steering cross buttons or the
nunchuck joystick could be used to control the robot. From the remote controller, pairs of
rotation speed and translation speed 〈Vrot, Vtrans〉 are send frequently. These speeds are
evaluated on the server side, if they are feasible or if it is necessary to deviate from the
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Remote Control Client /
Backend Remote Control Server

Figure 6.3: the network configuration during the remote control process. The robot is
steerable with the Wii remote controller, which is connected via Bluetooth to the remote
client. The client uses a standard TCP/IP connection to the remote server (the robot).
Over this connection the wished user speed is transferred from the client to the robot and
laser distance data plus video and audio data are transferred from the robot to the client.

wished speed configuration to avoid collisions. The deviation is done by the robot in an
autonomous fashion. So, even when the connection is lost, the robot is able to generate
safe driving commands.
The client side is responsible to open the TCP/IP connection towards the robot, to connect
to the Wii controller, and to display the front camera image (without sound), the back
camera image as a Skype connection, and the laser scan to visualize the current obstacle
situation if the robot or the user gives permission to the remote side (see Fig. 6.2 for
the sensor configuration on the robot). It also sends new driving speed commands to the
robot. These commands are evaluated on the server side.

6.2.2 Remote Control Objective

On the server side, the send speed commands 〈Vrot, Vtrans〉 are received and evaluated.
This is done by a remote control objective, which has to be activated from the dialog
manager when an emergency situation occurs. The activation of the remote control is by
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Figure 6.4: The remote back end. The robot is controlled by the Wii controller or the
steering cross at the bottom. The commands are send to the robot and the current laser
scan, the front camera image, and the back camra image are sent back and visualized on
the screen. Since the robot has a diameter of 0.6m, the user can estimate the distance
towards the next obstacle. The back camera is actually a Skype client, so the remote
controller is able to talk to a person, seen on the back camera. Note, that the shown
interface is only a mock-up. Work is in progress to get the Skype component into the
interface.

default not coupled to a video call, but both functionalities are at the moment combined
in the remote control case. Since the remote control objective is just one part of the
whole navigation setup, also the obstacle avoidance is activated during the remote control
process and those, the aspect of obstacle avoidance has not to be considered within this
objective. The only task is, to support the defined speed pair, given by the user. We
assume, that it is no strict command the remote controller sets, when steering the robot
with the controller. It is interpreted as an approximate wish, where the robot should drive
to. All speed combinations nearby the given speed pair have to be supported also by the
system and should be treated as an alternative.
Luckily, the dynamic window approach operates in the speed domain. A rasterized set
of speed pairs

〈
V

(i)
rot , V

(i)
trans

〉
is evaluated in each step and the best action is selected.

Hereby, the collision avoidance marks all actions, which lead to a collision in the next
step, as not feasible (see Fig. 6.5). From the remaining actions, the best is chosen. We
vote for each of the speed pairs by using a Gaussian function centered at the given user
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Vrot
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metric space speed action space

defined speed 
from user

nearest collision
free action

Figure 6.5: the voting process within the dynamic window: in each step, the dynamic
window evaluates a set of speed actions which in term lead to a specific trajectory. The
user defines one speed pair, which lead to the wanted trajectory (green on the left side).
Our objective votes this speed pair best. But other, nearby speed pairs will also given a
good vote, since they reflect also the "will" of the remote controller. This is done by a
Gaussian function. So, if the wished speed is not possible (due to a collision), the next
best, collision free action is chosen automatically by the dynamic window approach.

speed 〈V u
rot, V

u
trans〉:

f(V
(i)
trans, V

(i)
rot) = e

(V
(i)
rot−V

u
rot)

2+(V
(i)
trans−V

u
trans)

2

σ2 (6.1)

Here, only σ is a free parameter to define the range of equally good speed alternatives
with a high vote, and so, how much room for alternative decisions is left for the robot.
Note again, that the remote control objective does not check for collisions. This is done
by another objective, which is re-used for our purpose.
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7 Autonomous map building

One of the challenges the team of ALIAS encountered during user trials or on fairs was
the problem of enabling the robot to move, when no "navigation expert" is at hand. As
stated in the introduction, this is mainly due to the fact that the mapping of the operation
environment is done manually. In addition, this process needs detailed knowledge of the
mapping tool chain. That raises the question, how we could possibly overcome the draw-
back of requiring expert knowledge on setting up the robot.

In the second half year of 2012 we started to build a prototype of an automatic mapping
process, where the robot should explore its environment autonomously and returns a map
when exploration is finished.

Since this process is only required upon setup time, it is not involved in the classical
ALIAS application. That is why we decided to build a stand alone application to get
some first impressions of the complexity of this approach. In this chapter, we provide an
overview of the different stages of the mapping operation and show the details, where the
most attention was given to, the process of finding the next position to observe.

Note, that the current work is in an early stage and only has prototype character. Since it
was not foreseen in the navigation part we use all the time we could spare into this task to
show what could be possible.

7.1 Application Architecture

The application is mainly a very simple state machine (see Fig. 7.1), that includes some
basic parts of the navigation system, that allows the robot to drive to defined positions.
The state machine synchronizes the states by listening to events, coming from the naviga-
tion process. For example, when a position is reached or a position could not be reached.
For that synchronization we use the same mechanisms as the dialog manager.

The robot resides within one of two states. Either, it drives to a new exploration position
(and turns around itself one time when the position is reached) or the robot calculates the
position it should drive to next. Note, that we do not terminate this cycle automatically
at the moment, but we trigger finishing manually. What we use from our standard navi-
gation setup is: the dynamic window to control the robot motion, the path planner to get
to a goal, and the interface to enable the robot to drive autonomously. We use also the
standard localization module when driving towards a new exploration point.

What has to be adapted from existing code, is the SLAM module, which simultaneously
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Figure 7.1: The coarse structure of our application: while most parts are directly re-used
from the navigation, the part of finding the next best exploration point is new. All parts
are coordinated by a state machine, which actually is the exploration application.

localizes the robot and updates the map. As stated in the introduction, the SLAM approach
from Grisetti [7] is used here. The localization and map update is running constantly in
the background.

Additionally, the robot needs to find an optimal exploration position by knowing the actual
estimated map and the current position within that map. A feasible method is described
in the next section.

7.2 Find the next observation pose

The input for this module is the currently estimated map and the robot position. In this
occupancy map, obstacle values have high value (appear white in the Fig. 7.2) and known
free space has low values (appears black). Grey values are unknown cells, which have
never been observed. The goal of a good exploration position is

• the position has to be as near as possible

• from the position, a lot of unknown space should be visible

• the robot should still be able to localize itself at the goal position (means, the robot
should see enough distinct structure like corners etc.)
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To fulfill the first condition, we simple chose the nearest point from a set of possible can-
didates. But how to get to that set of candidates? First, we search for edges of free space,
which directly adjoin to unknown territory and are reachable by the robot. This reduces
the number of candidates greatly (see figure 7.2 below). Afterwards, we look for distinct
features (corners) in the image, to enable the robot still to be able to localize itself. This
is also important for the SLAM process, since in such places "bad" trajectories could be
distinguished more easily from "good" trajectories. But we also want to observe unknown
places!

Figure 7.2: The sequence of extracting the next exploration candidate, shown on a small
map. On the left the current map is shown (with the robot as a blue and red box). In the
middle the reachable cells are shown in red, while on the right side the distinct features
are shown in yellow, the edge cells are shown in green, and possible candidates are shown
as purple pixels.

In the last step we investigate a circular region around each possible candidate. Within
that region we count the distinct features f and also the amount of unknown space u in
percent of investigated cells. Than we apply a simple ranking scheme, where cells with
a higher f -count dominate another cell, and cells with an equal f -count dominate other
cells, when u is greater. So, the set is reduced significantly, since only the best cells of
this ranking process are considered. And finally, if two cells have an equal ranking, we
choose the nearest one.
This leads to robust results, but sometimes cells are selected, where a lot of corners are
present and the goal to reach is in fact one cell only. At this point, we have to improve
the filtering process, that only positions are observed, where a lot of equally good points
are near. So, single points with no neighbor candidates should be avoided, which makes
driving to that point more easy.

7.3 Map Building

Map building is done by a SLAM approach [7]. In this approach a particle filter is used to
estimate a variety of possible paths the robot could have driven. For each position of this
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path, also the sensor information (in this case a laser scan) is stored and forms a hypo-
thetical map. When a path is correct and the robot reaches known territory, the perceived
sensor information matches to what the robot expects to read from the sensor. In such a
situation wrong trajectories could be sorted out and only the correct trajectories remain.
If the particle count is not to large, the matching between expected sensor impression and
real sensor impression could be calculated in real time.

7.4 Conclusion

Currently, we could demonstrate that the robot starts to drive to several observation posi-
tions. The rule-set, which chooses possible next candidates, has to be improved since very
often undesired positions are chosen. These positions could not be approached robustly
and the state machine gets stuck. Also, a lot of fine tuning has to be done, regarding the
switching of the map during the navigation process. So, re-initializing the localization
at each time step is currently a problem, as well as keeping a correct robot localization
during navigating with a (very) sub-optimal map.
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8 Person tracker

This chapter should shortly give the latest update of the work on the person tracker. This
module is a crucial module for the whole project. It enables the robot to perceive persons,
which is required for social acceptable navigation and the face recognition modules, as
well as for the dialog system. During the project, it turned out very soon, that the existing
methods are not sufficient (based only on face detection) and the person tracker has to be
improved. Here, we show the latest version of the tracker.

8.1 Detection channels

The tracker has several detection channels, based on the laser scanner, the Kinect camera
and the four cameras, mounted on the top of the robot’s head. We do not rely on detecting
a speaker direction by using microphone arrays.

Laser channel

The laser channel does the leg-pair detection, which splits the laser scan into consecu-
tive segments and for each segment a 10-dimensional feature vector is calculated. These
feature include length of the segment, circularity, linearity, mean value, and some more
(see [1] for more details). Then, an decision tree is trained to separate leg segments from
non-leg segments. This channel gives the most reliable results, but false positive leg seg-
ments could still be detected. But even for humans these false positive leg segments are
indistinguishable from real leg segments.

3D camera channel (updated)

The Kinect 3D camera creates a point cloud from the current scene. This point cloud is at
the first step segmented into different segments (see figure 8.1 top left). In first prototypes
we used the OpenNI framework [18] to segment the user points from the background
points, but this requires the Kinect to run on 30 frames per second and uses almost all
of the robot’s processing power. And unfortunately, while integrating the Kinect into the
whole system, we found out that this device completely blocks the camera system of our
four head cameras. For these reasons we no longer rely on the OpenNI framework. We
tweaked the Kinect linux driver to run on a much lower frame rate, which is now 2 frames
per second, and also replaced the segmentation by an algorithm from the famous Point
Cloud Library [17].
Unfortunately, we do not have any information, which segment is a human, and which
not. That is why we do not want to detect humans in the segmented point cloud, but
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Figure 8.1: The tracker channels. Top left: the segmented point cloud with (blue) person
pixels. Top center: two examples of the HOG upper body detection (dark green boxes)
and Face detection (pink boxes). Note, that false positives are often detected with face
detection. Bottom: one laser based hypothesis and a hypothesis from the HOG channel.
Both are fused into one set of hypotheses.

only upper body directions. To do this, we use the other detection channels to give an
hypothesis, where a human is. With this hypothesis we can search the nearest segment and
extract an characteristic point segment. This segment is than used to calculate a principal
component analysis, which gives an optimal 3D coordinate system of the segment. The
axis with the lowest variance (or eigenvalue) is our gaze direction. The channel with the
highest variance is the z-direction, assuming the person to sit or stand. The channel with
the second highest variance is the body width, since the width of a human is greater than
the depth.

Omnivision channel (updated)

This channel handles the four images of the head cameras. Here, most work is involved
to get a visual feedback, where in the image a person is. We use 2 main detectors, namely
the face detection approach from [16] and an upper body detector, which uses histograms
of oriented gradients [2] (in short HoG). This detector requires very large images to detect
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persons, which are up to 4 meters away from the robot. This makes the detector very slow,
but also more reliable than the face detector.

The face detector very often finds false positive faces (positions in the image, where
actually no face is, but the detector belief so). The HoG is much better here, but requires
a lot more processing power. To keep the robot operable, we decided to detect persons
in the image channel only every 2 seconds. This allows all other (also time consuming)
operations for navigation to get an calculation time slot.

Camera front

Camera left

Camera right

Camera back

Rectification &
Upsampling 
(1280x800)

Rectification &
Downsampling
(320x200)

Rectification&
Downsampling
(320x200)

Rectification&
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(1280x800)

Upper body det.

Face detection

Face detection

Face detection

Upper body det.

Face detection

3D transform

Vision based channel

Figure 8.2: The vision detection channel. We use four separate images, pointing to the
left, right, front, and back. All channels use face detection to detect a user. Only the front
and back channel use also upper body detection (with HoGs) which requires significantly
larger images. The upper body detection is also computational complex, why we could
only calculate every 2 seconds the upper body detection.

Note, that all detection channels are image based. Afterwards, all detected hypotheses
are transformed separately into the 3D domain and are presented to the robot in world
coordinates. An overview is given in figure 8.2.
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8.2 Hypotheses fusion

The hypotheses from laser channel and image channel needs to be fused together. Here,
nearby hypotheses should strengthen each other to build one final, more robust hypothe-
sis. Hypotheses, which are more distant should be left untouched. Also, if in consecutive
time frames a hypothesis is found multiple times, this should strengthen the hypothesis.

To track the person over time, and strengthen the belief for that person, we use a Kalman
filter. So, consecutive detections can now keep the covariance matrix small (as a measure
of "belief"), while the uncertainty will grow, if detections will not appear (due to the in-
fluence of an artificial motion model). This is a standard approach. But the hypotheses we
present to the Kalman filter are a result of a previously merging step of single hypotheses.
The approach is simple: if one hypothesis is near in time and space to another hypoth-
esis (already covered by a filter), than it is merged with the current filter hypothesis by
covariance intersection (where the smallest values of the covariance matrix are used). If
a hypothesis could not be matched to an existing one, a new Kalman filter is constructed
with a low certainty.

8.3 Conclusion

In the current state, the person tracker is usable for user trials. At the one hand, we where
able to get more robust results but need on the other hand high computational power.
Also, the problem of false positive detections is not solved, as well as missing detections.
To build a market ready product, this point has to be investigated very intensely.
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9 Conclusions

In this deliverable, we presented the latest versions of our software modules for approach-
ing a person, avoiding a person, observing a person, and remote controlling the robot.
Also, the challenges of autonomous map building and person detection are shown.

At this point we summarize the achievements and remaining problems of each of these
points:

• Approaching a person
achieved: stable running approach
remain: improve person tracker robustness

• Avoiding a person
achieved: stable running planner, average person trajectory prediction
remain: improve person trajectory prediction parameters

• Observing a person
achieved: stable running approach
remain: improve person tracker robustness, add more criteria (stay at wall and not
in walking path, do not block line of sight to television)

• Remote control
achieved: stable running approach
remain: improve graphical user interface

• Automatic map building
achieved: very early prototype
remain: extensive testing to find problems, test different SLAM methods, many
minor problems ... (a large field of work)

• Person tracking
achieved: able to detect persons with camera and laser
remain: robust, fast camera-based detectors

During the development of this project we found the aspects of remote control, person
tracking, and autonomous map building as additional aspects, which are either necessary
or nice-to-have. Not all additional aspects could be solved during the remaining time of
the project. We focus mainly on what we have promised in the description of work, which
includes the minor issues on avoiding a person, observing a person, and remote controlling
the robot. We will also try to implement a demonstrable version of the automatic map
building application, but this will still be a prototype with many smaller problems. The
person tracker will be left as it is, since we where able to use it for all demonstrations

44



ALIAS D6.5

we intended to show during the user trials. But for a final product especially this point
has to be improved and the focus should be on it for future projects. A last update of the
remaining points will come in the final report of the project.
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