

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 1 of 28

FOSTERING SOCIAL INTERACTION OF HOME-BOUND AND
LESS EDUCATED ELDERLY PEOPLE

Complete Agent Implementation and
Documentation

Deliverable No. D3.3

Work Package
No.

WP3 Workpackage
Title

Interaction Support Agent
Prototype

Authors (per company, if more than
one company provide it together)

Orkunt Sabuncu (UNIPOTS)
Riccardo Rasconi (CNR)

Status (F: final; D: draft; RD: revised
draft):

RD

File Name: EASYREACH Deliverable D3.3_v1.5.doc

Project start date and duration 01 November 2010, 28 Months

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 2 of 28

DOCUMENT HISTORY

Version

Date Comments Author

1.0

07/08/13 Draft: Document creation Orkunt Sabuncu

1.1

24/08/13 Draft Orkunt Sabuncu

1.2

13/09/13 Draft Riccardo Rasconi

1.3

13/09/13 Revised Draft Orkunt Sabuncu

1.4

15/09/13 Revised Draft Riccardo Rasconi

1.5

16/09/13 Revised Draft Orkunt Sabuncu

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 3 of 28

List of abbreviations

ASP Answer Set Programming

SAT Satisfiability Checking

KRR Knowledge Representation and Reasoning

API Application Programming Interface

STB Set-Top-Box

IR Infrared

RFI Radio Frequency Identification

ICT Information and Communication Technology

IT Information Technology

AI Artificial Intelligence

DB Database

PA Personal Assistant

GOAC Goal Oriented Autonomous Controller

T-REX Teleo-Reactive Executive

OMPS Open Multi-Components Planning and Scheduling

P&S Planning and Scheduling

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 4 of 28

Table of Contents

DOCUMENT HISTORY .. 2

LIST OF ABBREVIATIONS ... 3

EXECUTIVE SUMMARY .. 5

1. INTRODUCTION... 6

2. GENERAL ARCHITECTURE OF THE PERSONAL ASSISTANT... 8

3. ITEM SELECTION FRAMEWORK USING ANSWER SET PROGRAMMING ...10

4. USAGE OF THE TAXONOMY OF INTERESTS FOR SELECTING ITEMS..13

5. TAXONOMY OF USER INTERESTS ..15

6. SOCIAL DATABASE INTERFACE ..17

7. ACCESSING THE PERSONAL ASSISTANT FROM THE EASYREACH CLIENT ..19

8. HANDLING ACTIONS OF THE USERS ...20

9. THE EASYREACH AGENDA ..22

10. REFERENCES ...28

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 5 of 28

EXECUTIVE SUMMARY

This document aims at presenting the complete implementation and documentation of the

interaction agent of the EasyReach system. The agent, which is called Personal Assistant (PA),

suggests new interactions to the user by considering his profile, history of interactions he has

performed within the EasyReach network. Moreover, the agent can provide reminder feedbacks and

can provide an agenda functionality. In general, PA constitutes the intelligent component of the

whole system.

The suggestions are in the form of new people or groups shown in the EasyReach client. In this way

EasyReach system fosters new social interactions for the elderly user. This implicit suggestion

method is less confusing and annoying for the elderly than asking explicitly each time and making

him feel forced to interact. These items (people or groups) are selected by the PA in a way that these

items have common properties with the user. For instance, the selected items may share common

interests or they may have occurred in previous communications/interactions with the user.

The main connections among the different components/applications/services considered in the

EasyReach architecture and the Personal Assistant (PA) module will be presented and discussed. In

particular, the PA's reasoning engine for selecting items is based on Answer Set Programming

(ASP). For reminding notifications and feedback, PA uses timeline based reasoning.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 6 of 28

1. Introduction

The Personal Assistant (PA) is the software component that suggests new interactions through the

social network, and is integrated as part of the EasyReach client (see Figure 1 for the architecture of

the whole EasyReach system). The PA not only analyses the profile of a user, but also monitors his

activities and interactions within the social network, reasoning on these data to suggest new

interactions. Basically, the PA suggests which items should be shown in the user’s lists, where an

item can be a person or a group; the suggestion may lead to a new interaction depending on the

user’s will to engage in an interaction regarding the selected person/group. A person who is not

followed by the user might be shown in the contact list because they have common interests.

Similar reasoning can also apply to a group the user is not a member of. The user can check the

suggested items and can send the person a message or check the group message board. This implicit

suggestion method is less confusing and annoying for the elderly than asking explicitly each time

and making him feel forced to interact. Moreover, the PA is capable of sending feedback and

notifications to the user. Since these notifications are time critical (consider that it gets a new

message from a person), it uses timeline-based reasoning to correctly notify the user. It also

supports the feature of agenda, where the user can enter reminders.

The PA module communicates with 2 modules through their respective interfaces: the presentation

layer and the social engine DB (see the architectural diagram in Figure 1). Note that the interface

for the social DB features a one way communication (i.e., the PA fetches data from the social engine

to monitor interactions of the user), while the interface between the PA and the presentation layer

manages two way communication. For instance, the presentation layer can invoke the PA when it

needs to show the user’s list items, and the selected items are returned to the representation layer.

Additionally, the interface is designed so that the PA can get updates related to activities and

interactions of the user within the social network; in this way some of inefficient polling of the

social engine database are avoided. The detailed information about the architecture of PA is

explained in the next section.

We implemented a framework for the PA to suggest new interactions. Answer Set Programming

(ASP [1]), a popular declarative problem solving approach in the field of knowledge representation

and reasoning, is utilized to implement the reasoning capabilities needed by the PA to intelligently

select items to be shown in the user’s lists. In this work we use tools from the Potassco answer set

collection, namely, gringo for grounding and clasp for solving answer set programs.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 7 of 28

Figure 1: The EasyReach architecture

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 8 of 28

2. General Architecture of the Personal Assistant

The personal assistant (PA) suggests items (people and groups) to the EasyReach client. It is

composed of four main modules; Item selector, Selection history manager, Social DB manager, and

Interface for client updates. Figure 2 depicts these modules within the main architecture of PA.

The suggestion process of PA starts with a call of the EasyReach client. The client may anytime ask

for people or groups to be suggested for the current user of the STB (marked by 1 in Figure 2). The

module responsible from selecting items for selection is the Item selector. The selected items are

returned back to the client (marked by 2).

Figure 2: The general architecture of the personal assistant

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 9 of 28

The Item selector uses Answer Set Programming (ASP) for suggesting items. The logic program is

composed of a general encoding of selecting items using weights (marked by 3). Instance files

(marked by 4) are needed for each user using the STB. These instance files hold data about the user,

for instance, his friends, registered groups or his profile.

The logic program composed of the encoding and instances is fed to gringo for grounding and then

to clasp for solving. Gringo is a grounder for ASP while clasp is an answer set solver. Both tools are

from the Potassco toolset for ASP developed by University of Potsdam [3].

The found answer set represents the people and groups selected for suggestion. The Item selector

does not directly return this answer set to the client. Instead it is processed by the Selection history

manager, which is responsible for maintaining a history for selected items to be utilized for

performing fair selections. Unfair suggestions formed by selecting the same person or group all the

time should be avoided. Note that one of the main objectives of EasyReach is to improve social life

of the user. New suggestions increase the chance of fulfilling this objective. The Selection history

manager saves the current selection as an instance file (marked by 5). At the next call to Item

selector this history is considered since the encoding applies some penalty to previously selected

items. In this way, it is possible that some items with not high weight values can have chance to be

selected. The history has also a capacity (e.g., holding only last 10 suggestions). In this way, a

previously selected item may later on be selected again.

The Social DB manager module is responsible from populating instance files (marked by 6) for the

current user by connecting to the central social DB. When a user logins to the STB, this module is

called to update data in instance files related to the user. These data include people the user follows,

his groups, and profile by means of his interests. Additionally, after analysing the user’s interests

within the taxonomy of interests, other people who the user might be interested for contacting and

groups which the user might be interested in registering are fetched from the central social DB.

Consider that a new group about some interest topics similar to the ones of the current user have

been created in the EasyReach network. This is definitely a potential for suggestion. In order to

make such recent changes in the EasyReach social network available to the Item selector, Social DB

manager updates instance files periodically.

The updates in the social network are important for better and complete suggestions. Although the

Social DB Manager periodically fetches recent updates, its period is not too frequent considering

the costly operation of connecting and fetching data from the central Social DB. Some updates,

however, are more crucial for suggestions and should be made available to Item selector quickly.

Actions performed by the current active user of the STB cause such updates in the social network.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 10 of 28

For instance, when the user sends a message to another person, it causes an update which should be

considered fast enough so that the user gets better suggestions. The Interface for client updates

module’s task is to utilize such kind of updates just in time when they occur. It provides several

interface procedures, which are called by the EasyReach client when an action is performed by the

user (marked by 7). The Interface for client update module writes these updates to an instance file

(marked by 8). In this way some of inefficient polling of the social DB are avoided. As a result, at

the next call of Item selector these updates are considered without the need for waiting the next

update of the Social DB manager module.

3. Item Selection Framework Using Answer Set Programming

We implemented a framework for the PA to select items for suggesting to the EasyReach user.

There can be several reasons for the PA to suggest a user or a group. The framework analyses these

reasons and chooses the most viable set of items. It is formally encoded in Answer Set

Programming (ASP). All reasons have an associated weight. The encoding enumerates possible

reasons for selecting items and uses their weights to cast the suggestion problem as a quantitative

optimization problem. The answer set solver tries to maximize the total weight of a selected set of

items (we have already used a similar approach to implement suggesting interactions related to

events in the social network is [2]). Here we list the main parts of the logic program encoding which

is responsible from suggesting items.

The possible reasons for selecting an item are interests mentioned in a user's or group's profile,

whether the user follows the person or not, whether the user is registered to the group or not,

whether a group is created by a person who the user follows and recent communication between the

user and a user or a group. The interests are actually nodes from a taxonomy of interest keywords.

How a taxonomy is used to reason on interests and suggestions will be explained in the next

section. The following shows ASP facts encoding the reasons with fixed weights.

weight(friendship,1). % The user follows the person

weight(regisgroup,1). % The user is registered to the group

weight(friendowns,2). % The group is created by a friend of the

user

Recent communication is represented by the comm/4 predicate.

% user 100 (id) has sent a msg to user 201 at 15:00:01 on

19/12/2012

comm(sendmsg,100,201,"20121219150001").

% user 100 has received a msg from user 103 at 13:42:42 on

22/5/2013

comm(recvmsg,100,103,"20130522134242").

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 11 of 28

% user 100 has sent a msg to the group 910 at 16:00:00 on

22/5/2013

comm(sendmsg,100,910,"20130522160000").

The weight of a recent communication is calculated by a fixed time window based algorithm. In the

current setting we consider past communications in the last one month. The time window (1 month)

is also divided into 4 periods where the first one is the shortest and the length gradually increases.

The intuition is we want to give more importance to the recent communications than the older ones.

Generating and calculating weights of possible items with which the user had a recent

communication are encoded by the following logic program part. CommCount predicate gives how

many number of communication instances occurred during a specific period. Then, commScore

gives weight scores for each period and item (with which the user had communication). Note that

the rules generating commScore give more weight to earlier periods than later ones (corresponds to

giving more importance to more recent communication instances). At the end possible(I,comm,S)

predicate encodes that item with id I is possible to be selected for suggesting because the user has

communicated with it and it has a overall weight score of S.

commWith(U,P) :- user(U), comm(_,U,P,D).

commCount(Per,P,C) :- user(U), commWith(U,P), commPeriod(Per,S,E),

 C := #count{ comm(T,U,P,D):D>S:D<=E }.

periodCount(C) :- C:= #count { period(P) }.

commScore(I,Per,C*W) :- commCount(Per,I,C), C>0, periodCount(N),

Per <= (N/2), W:=N-Per+1.

commScore(I,Per,W) :- commCount(Per,I,C), C>0, periodCount(N),

Per > (N/2), W:=N-Per+1.

possible(I,comm,S) :- user(U), commWith(U,I),

 S:=#sum[commScore(I,Per,W):period(Per)=W].

The following rules are related to the reasons in which the user follows the person, the user is

registered to the group, and the group is created by a person who the user follows.

possible(I,friendship) :- user(U), follows(U,I).

possible(G,regisgroup) :- user(U), registered(U,G).

possible(G,friendowns) :- user(U), follows(U,F), groupowner(G,F),

 not registered(U,G).

Up to now the encoding generated instances of predicates possible(I,R) and possible(I,comm,S)

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 12 of 28

corresponding to possible items for selection for various reasons. The other possible predicate

representing items with common interests with the user will be explained in the next section. The

rules below encode the total score for an item. Note that an item may have more than one reason to

be selected. The #sum literal in bodies of rules generating itemscore predicate aggregates all the

weights of reasons for each possible item.

% general reasons

possibleitem(P,person) :- possible(P,_), personid(P).

possibleitem(P,group) :- possible(P,_), groupid(P).

% interest related

possibleitem(P,person) :- possible(P,_,_,_), personid(P).

possibleitem(P,group) :- possible(P,_,_,_), groupid(P).

% recent communication events

possibleitem(P,person) :- possible(P,_,_), personid(P).

possibleitem(P,group) :- possible(P,_,_), groupid(P).

itemscore(I,followed,S) :- possibleitem(I,person), follows(U,I),

 user(U),

 S:=#sum[possible(I,R):weight(R,W)=W, possible(I,K,Kn,WW)=WW,

 possible(I,_,W3)=W3].

itemscore(I,notfollowed,S) :- possibleitem(I,person), not

 follows(U,I), user(U),

 S:=#sum[possible(I,R):weight(R,W)=W, possible(I,K,Kn,WW)=WW,

 possible(I,_,W3)=W3].

itemscore(I,registered,S) :- possibleitem(I,group),

 registered(U,I), user(U),

 S:=#sum[possible(I,R):weight(R,W)=W, possible(I,K,Kn,WW)=WW,

 possible(I,_,W3)=W3].

itemscore(I,notregistered,S) :- possibleitem(I,group),

 not registered(U,I), user(U),

 S:=#sum[possible(I,R):weight(R,W)=W, possible(I,K,Kn,WW)=WW,

 possible(I,_,W3)=W3].

The choice rules below generate the whole search space for the item selection problem. There are 4

groups of items PA selects; people followed, people not followed, registered groups, and not

registered groups. Instances of item predicate in an answer set shows the items selected by the PA.

The second argumnet of the item predicate represents which group the item is from, i.e., whether it

is followed, notfollowed, registered, or notregistered. The upper bounds for selections can be set

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 13 of 28

when first setting up the PA. For instance, if max_num_not_followed is set to 5, then at most 5

people, whom the user is not following, will be selected by the answer set solver. Note that while

the current EasyReach client asks the PA for 2 groups which are people not followed and groups not

registered to, PA is flexible enough and supports the whole 4 selection groups. The maximize

statements tries to maximize the number of items selected (of course it is up to the limit given by

the upper bound). This is not given as a lower bound in the choice rule since there may be not

enough items from the respective group to fulfil the desired number of selected items.

The last optimization statement ensure that items with highest scores are selected. The intuition is

that whenever an item has a greater weight score than another item's score, it has more reasons to be

selected. This, in turn, means that it is better item for suggesting to the user since it leads to a social

interaction more probably than the other one with a lower score. The optscore predicate gives the

total score for the selected item. Optscore is calculated using the respective itemscore predicate

instance with an additional consideration of penalties. Penalties are applied for already selected

items. In this way selecting always the same set of items is eliminated and fair selections become

possible. Recall that the Selection history manager module of PA takes record of selected items in

the past as explained in Section 1.

{ item(I,followed):possibleitem(I,person):

 follows(U,I):user(U) } max_num_followed.

{ item(I,notfollowed):possibleitem(I,person):

 not follows(U,I):user(U) } max_num_notfollowed.

{ item(I,registered):possibleitem(I,group):

 registered(U,I):user(U) } max_num_registered.

{ item(I,notregistered):possibleitem(I,group):

 not registered(U,I):user(U) } max_num_notregistered.

#maximize { item(I,followed) @2 }.

#maximize { item(I,notfollowed) @2 }.

#maximize { item(I,registered) @2 }.

#maximize { item(I,notregistered) @2 }.

#maximize [item(I,C):optscore(I,C,S)=S @1].

4. Usage of the Taxonomy of Interests for Selecting Items

In order to reason on user interests or group topics we need a model of interests; we utilize a

taxonomy of users’ interests for this purpose. The selection of interests is based on preliminary

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 14 of 28

investigations about elderly needs, hobbies and expectations. Formally, we modeled our taxonomy

as a forest of keywords of interests where the edges represent the subsumption relation among

keywords. Figure 3 depicts a subset of the taxonomy used in EasyReach. Note that the keyword

Documentary is subsumed by Programs, and Programs is subsumed by TV. Thus, a keyword at a

deeper level of a tree in the taxonomy represents more specialized interest than one at a shallower

level.

A user creates a profile by specifying keywords corresponding to his interests. The EasyReach

client lists the taxonomy in an easy to select way at the user creation stage. The taxonomy allows

the PA to exploit the semantic information inherent in a user profile. For example, when a user

specifies Formula 1 as his interest, PA can use not only Formula 1 but also Auto racing or

Motorcycle racing for reasoning to suggest new items in his list.

In the ASP program of the PA, the taxonomy is encoded by logic program facts for keyword nodes

and subsumption relation.

keywordid(67).

keywordname(67,"TV Programs").

keywordid(82).

keywordname(82,"Documentary").

subset(82,67).

When PA is asked for selecting items, it considers the interests mentioned in the user’s profile.

Figure 3: A subset of the taxonomy of user's interests

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 15 of 28

Starting from interest nodes in the taxonomy, it traverses to connecting nodes using the

subsumption relation. A connecting node must be reachable with a path whose length is expressed

as a parametric value denoting the maximum allowed path length. For instance, let {Motorcycle

racing, Formula 1} be the set of interests mentioned in a user’s profile and the taxonomy used be

the one shown in Figure 3. Assuming that the maximum allowed path length is 2, the interest nodes

reachable from Motorcycle racing are {Motorsports, Auto racing, Sports}. Considering all the

interests in the user’s profile, the PA takes the set {Motorcycle racing, Formula 1, Motorsports,

Auto racing, Sports} into account when checking other users with common interests. Additionally,

the PA assigns weight to the interests dynamically according to the depth of its node in the

taxonomy tree. For our example the weight of Formula 1 is greater then Motorsports. The intuition

is that the more specialized a common interest is, the better the suggestion. We encoded all the

taxonomy traversal and weighting in ASP and total weight scores of item related to interests are

represented by instance of the possible(P,K,Kn,W) predicate (as mentioned in Section 3), i.e., item P

(a person or a group id) is suitable for selecting with a weight score W regarding the common

interest K (with name Kn).

5. Taxonomy of User Interests

The following list shows the taxonomy of user interests used by the PA. These interests are

populated after preliminary user studies. Hence, they are more geared towards the elderly people

considering the main user group in the EasyReach project. The subsumption relation between

taxonomy nodes is shown by proper indentation.

Sports

Events

Basketball

Fishing

Football

Motorsports

Auto Racing

Formula One

Motorcycle Racing

Olympics

Tennis

Winter Sports

Television

Regional

News

History

Programs

Comedy

Documentaries

Educational

Food

Health

Talk Shows

Music

Films

TV Series

Entertainment

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 16 of 28

Arts

Literature

Books

Photography

Performing Arts

Theatre

Dancing

Painting

Music

Singing

Movies / Cinema

Health

Medicine

Fitness

Disabilities

Society

Religion

Parish Church

Organizations

Charities

Voluntary Association

Cultural Association

Games

Yard/Outdoor Games

Bocce

Card Games

Bridge

Board Games

Chess

Backgammon

Reality Shows

Home

Gardening

Do-It-Yourself

Cooking

Recipes

Pets

Collecting

Stamps

Coins

Postcards

Records

News

Newspapers

Radio

Tourism

Culture

Travel

Outdoor Trips

Health Tourism

Festivals

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 17 of 28

6. Social Database Interface

The PA fetches instance data from the social DB. The Social DB manager module of PA is

responsible from this (as shown in Figure 2). When a user logs in to the EasyReach client, Social

DB manager fetches/updates instances for the user. Additionally, it updates instance data of the

current user in regular intervals (e.g., every 2 hours) which can be set parametrically. The regular

updates are needed since there might be changes related to the current user in the whole EasyReach

social network. For instance, a new group may be created and it may be about some topics the user

is interested in.

Below is a list of queries that are needed by the Social DB manager to fetch data from the Social

DB. The queries have input parameters which puts constraints on the data to be fetched. In this way

we do not fetch unnecessary data. This is important optimization for the efficiency of the whole

EasyReach system.

These functionalities are implemented as WSDL services like remote procedure calls. The

communication protocol used is SOAP. (I) and (O) denotes input and output parameters

respectively.

1. Fetch taxonomy keywords (fetchTaxonomyKeywords)

Returns a list of tuples composed of

(O) keyword_id:

(O) keyword_name:

2. Fetch taxonomy relation (fetchTaxonomyRelations)

Returns a list of tuples composed of

(O) keyword_id1:

(O) keyword_id2:

The keyword_id1 is a immediate subset of keyword_id2. (e.g., <cooking,home>).

3. Fetch people who are interested in an input set of interests (fetchPeopleInterestedTo)

(I) target_interests: List of keyword_ids

Returns a list of tuples composed of

(O) person_id:

(O) person_name:

(O) interests: List of keyword_ids where the person person_id is interested in.

An output tuple should satisfy the condition that there exists a keyword k ∈ interests and

targetinterests.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 18 of 28

4. Fetch people who a user follows (fetchUserContacts)

(I) user_id: Id of the user

Returns a list of tuples composed of

(O) person_id: Id of the person who is followed by user_id

(O) person_name:

5. Fetch groups which are about an input set of interests (fetchGroupsRelatedToInterests)

(I) target_interests: List of keyword_ids

Returns a list of tuples composed of

(O) group_id:

(O) group_name:

(O) group_owner: Id of the person owning the group

(O) interests: List of keyword_ids where the group is about.

An output tuple should satisfy the condition that there exists a keyword k ∈ interests and

targetinterests.

6. Fetch groups which are owned by people followed by a user

(fetchGroupsOwnedByPeopleFollowedByUser)

(I) user_id: Id of the user

Returns a list of tuples composed of

(O) group_id:

(O) group_name:

(O) group_owner: Id of the person owning the group

An output tuple should satisfy the condition that user_id is following group_owner.

7. Fetch groups which a user has registered to (fetchGroupsSubscribedByUser)

(I) user_id: Id of the user

Returns a list of tuples composed of

(O) group_id:

(O) group_name:

An output tuple should satisfy the condition that user_id is registered to the group group_id.

8. Fetch communication instances which a user sent after some date

(fetchSentMessagesAfterDateByUser)

(I) user_id: Id of the user

(I) lastdate: String. (e.g., 20121217132240 for 13:22:40 17/12/2012)

Returns a list of tuples composed of

(O) obj_id: Id of the person or group to which the user sent a message

(O) type: ‘P’ if obj_id is a person id, ‘G’ if obj_id is a group id

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 19 of 28

(O) date: String. Date of the message (e.g., 20121217132240 for 13:22:40 17/12/2)

An output tuple should satisfy the condition that date > lastdate.

9. Fetch communication instances which a user received (only from other people) after

some date (fetchReceivedMessagesAfterDateByUser)

(I) user_id: Id of the user

(I) lastdate: String. (e.g., 20121217132240 for 13:22:40 17/12/2012)

Returns a list of tuples composed of

(O) person_id: Id of the person from whom the user received a message

(O) date: String. Date of the message (e.g., 20121217132240 for 13:22:40 17/12/2)

An output tuple should satisfy the condition that date > lastdate.

10. Fetch interests of a user (fetchUserInterests)

(I) user_id: Id of the user

Returns a list of tuples composed of

(O) keyword_id: Id of a keyword which the user is interested in

7. Accessing the Personal Assistant from the EasyReach

Client

The main functionality of PA is to select items for suggestion. The PA provides an interface for the

EasyReach client whenever it requests this functionality. The interface is the callSelector script.

The EasyReach client calls callSelector after a user logs in to the system. In principle it can be

called whenever the client needs to populate its lists of suggestions.

The return code for successful operation is 0. Anything other than that is an unsuccessful call. The

output is composed of 4 parts, 2 of which are list of followed people (FOLLOWED) and registered

groups (REGISTERED) sorted according to their scores. The other 2 parts are selected new items;

not followed people (NOTFOLLOWED) and not registered groups (NOTREGISTERED). As

mentioned earlier, the EasyReach client asks for only new items currently. The following example

shows a call and its output.

Example:

callSelector

FOLLOWED:

itemscore(109,followed,10).

itemscore(103,followed,5).

itemscore(104,followed,4).

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 20 of 28

itemscore(101,followed,1).

itemscore(105,followed,1).

itemscore(107,followed,1).

REGISTERED:

itemscore(777,registered,1).

itemscore(999,registered,1).

NOTFOLLOWED:

item(201,notfollowed).

item(333,notfollowed).

NOTREGISTERED:

item(902,notregistered).

item(901,notregistered).

8. Handling Actions of the Users

Although PA periodically fetches instance data from the Social DB, it is not frequent considering

the costly operation of connecting and fetching data from the social DB. Hence, there might be

some frequent changes related to actions of the user that may not be fetched by the Social DB

manager. These changes are important for better and complete suggestions. Consider that the user

has just sent a message to another person or a group. These actions lead to changes in the Social DB

which are not yet fetched. The PA has a mechanism to handle these changes fast so that it can give

better suggestions. This is the responsibility of the Interface for client updates module.

The PA provides several procedures, which are called by the EasyReach client whenever the user

makes an action generating updates in the Social DB. These procedures updates related instance

data to be used by the next call of item selection.

The procedures for handling user actions are bundled in the changeFromUI script. The client calls

this script when the related interaction action occurs (for instance sending a message). Below is a

list of these procedures with respective example actions. (I) and (O) denotes input and output

parameters respectively. The return code for the script is 0 for successful operations. Any other

number means that the operation was unsuccessful.

1. Follow a person
(I) user_id: Id of the user

(I) person_id: Id of the person whom the user follows

Example: The user with id 100 follows the person with id 108.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 21 of 28

changeFromUI followspers --user 100 --pers 108

2. Group creation
(I) user_id: Id of the user

(I) group_id: Id of the group

(I) group_name: String. Name of the group

(I) keyword_id list: List of interest keywords for the group

Example: The user with id 100 creats the group with id 999 whose name is “NEX Camera

Group”. The groups is about keywords 202 and 231. Note that the keywords are comma

separated list.
changeFromUI creategrp --user 100 --grp 999 --name “Nex Camera

Group” --keyw 202,231

3. Registering to a group
(I) user_id: Id of the user

(I) group_id: Id of the group

Example: The user with id 100 registers the group with id 999.
changeFromUI registergrp --user 100 --grp 999

4. Addition of an interest to the profile
Currently not supported.

(I) user_id: Id of the user

(I) keyword_id: Id of the added keyword

5. Send a message to a person (followed or non-followed one)
(I) user_id: Id of the user

(I) person_id: Id of the object person

(I) date: Date of the communication. String. 20121217132240 for 13:22:40 17/12/2012. This

date should be the same date as the DB entry for the corresponding communication.

Example: The user with id 100 sent a message to the person with id 108 at 12:00:12 in

21/12/2012.
changeFromUI sendmsgpers --user 100 --to 108 --date

20121221120012

6. Send a message to a registered group
(I) user_id: Id of the user

(I) group_id: Id of the group

(I) date: Date of the communication. String. 20121217132240 for 13:22:40 17/12/2012. This

date should be the same date as the DB entry for the corresponding communication.

Example: The user with id 100 sent a message to the group with id 999 at 12:00:12 in

21/12/2012.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 22 of 28

changeFromUI sendmsggrp --user 100 --to 999 --date

20121221120012

7. Receive a message from a person (followed or non-followed one)
(I) user_id: Id of the user

(I) person_id: Id of the person who sent the message

(I) date: Date of the communication. String. 20121217132240 for 13:22:40 17/12/2012. This

date should be the same date as the DB entry for the corresponding communication.

Example: The user with id 100 received a message from the person with id 108 at 12:00:12

in 21/12/2012.
changeFromUI recvmsgpers --user 100 --frm 108 --date

20121221120012

8. User login
(I): user_id: Id of the user

Example: The user with id 100 logs in. UI should call this API function before asking for

item selections.
changeFromUI userlogin --user 100

9. The EasyReach Agenda

Among the services that EasyReach offers to the elderly users, the Agenda service is particularly

useful as it provides proactive support for the user’s daily life, by generating on-line notifications

relatively to the user’s personal commitments. The main objective of the EasyReach Agenda is to

remind important deadlines and/or managing appointments by providing to the user a comfortable

and direct environment through which to access and provide all the necessary information about the

reminder messages she/he wishes to be notified in the future. In other words, through the agenda

service, the user has the possibility to send timed messages to herself, i.e., by deciding what to

communicate (the contents of the message) and when to communicate it (i.e., the time of the

notification). Informally, the Agenda service works by providing a continuous monitoring of all the

data input by the user, constantly checking their “expiration date” against the system’s clock time,

and “firing” the proper notification event when the two coincide.

Given that the EasyReach system is designed to target an elderly users basin (possibly pre digital

divide users) not familiar with technological devices and procedures, many efforts have been put to

simplify the utilization of the agenda service as much as possible, mainly by keeping the

technological aspects as much as possible in the background, by limiting the quantity of information

that the user must provide, and by re-utilizing the same system-user interaction methodologies used

elsewhere throughout the system.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 23 of 28

The EasyReach Agenda Timeline-based representation

The technology used to implement the agenda service and to represent all necessary components is

the same technology exploited for timeline-based planning, an approach to temporal planning which

has been mostly applied to the solution of several space planning problems [4].

Figure 4: The broad idea of the TRF Domain Modeling and Solving

The philosophy underlying Timeline-based Planning and Scheduling is inspired by classical Control

Theory, in that the planning and scheduling problem is modelled by identifying a set of relevant

features whose temporal evolutions need to be controlled to obtain a desired behavior (see Figure

4). Within the Timeline-based Representation Frameworks (TRF), such problem features are called

components and are the primitive entities for knowledge modelling. They represent logical or

physical subsystems whose properties may vary in time. An intrinsic property of components is that

they evolve over time, and that control decisions can be taken on components to define their

evolution. In other words, components model different temporal behaviors over time based on a set

of constraints while modeling the physical world. The problem-solving task consists of finding a

temporal behavior from the set of component behaviors such that all requirements, including the

current planning goals, are satisfied.

In timeline-based planning, the main data structure is the timeline which, in generic terms, is a

function of time over a finite domain. Events on timelines are called tokens and are represented

through a predicate extended with extra arguments belonging to the Time domain T (real or

discrete). For example, a predicate At(l), denoting the fact that an agent is at a certain location l, can

be extended with two temporal arguments s  T and e  T, with s < e, representing its starting and

ending times, respectively; the At(l, s, e) formula would be true only if the agent is at location l from

time s to time e. Tokens can be linked to each other through relations in order to reduce allowed

values for their constituting parameters and thus decreasing allowed system behaviors.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 24 of 28

Figure 5: An example of Timeline

Figure 5 presents a simple example of a Timeline containing three tokens, each characterized by a

start time s, an end time e, and an argument l. The timeline in this particular example may be used

to describe the evolution of a moving vehicle over time, i.e., the vehicle being at location l1 from

t=s1 to t=e1, then moving to location l2 from t=s2 to t=e2, and finally staying at location l2 from t=s3

to t=e3.

In order to express planning domain/causal rules in the current internal representation we make use

of the concept of compatibility. We describe compatibilities by means of logic implications

reference → requirement. Within this context, the task of the planner is to find a legal sequence of

tokens that bring the timelines into a final configuration that verifies both the domain theory (i.e.,

the set of compatibilities that model the domain's dynamic behaviour) and a determined set of

desired conditions called goals. Starting from an initial state, the planner moves in the search space

performing a complete refinement search by adding or removing tokens and/or relations (i.e.,

changing the current state) until all goals are satisfied.

As can be seen, the timeline-based technology allows for representing and reasoning on planning

domains that may exhibit rather complex characteristics. As explained below, within the EasyReach

current agenda service only a part of the timeline-based functionalities are used, i.e., those mostly

related to the components representation issues, and to some basic scheduling capabilities (i.e., used

to separate temporally overlapping tokens after the insertion in the timeline, operation executed

transparently to the user). However, a full utilization of both the representation and reasoning the

potential of timeline-based technology can surely allow for significant enhancements in future

versions of the system. In particular, the exploitation of the planning capabilities on top of planning

domains synthesized out of the some of the user’s activities performed within the system, as well as

of the temporal relations possibly existing among them, might significantly increase the overall

system’s proactive features.

The basic objective of our agenda environment is to create and dynamically adapt a timeline in

which each token represents a reminder message to be acquired and duly notified to the user as time

passes. The pursued idea is to represent the agenda as a walking plan composed of different

“messages” to be sent to the users, characterized by both temporal and non-temporal features. Such

plan, composed by time-tagged activities that trigger the presentation of multimedia events, is first

synthesized starting from an abstract specification provided by the user (see next subsection), and

then executed.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 25 of 28

Figure 6: The EasyReach agenda interaction steps

During the plan execution, the value of the current system clock is continuously compared with the

data associated to each token (see Figure 6); in particular, the information relatively to its start time

will be particularly relevant as it determines the time at which the reminder is to be notified to the

user. In all cases where the two previous values match, the proper notification will be fired, as

shown in Figure 6 (a). Finally, as soon as the user decides to acknowledge the notification (Figure 6

(b)), the audio file associated to the link contained in the notification token will be played, thus

delivering the reminder message (Figure 6 (c)).

The Agenda from the user’s perspective

One of the main guidelines that have been followed for the design of the agenda has been the

simplicity of use; for this reason, all possible efforts have been dedicated to make the utilization of

this instrument as natural and comfortable as possible for the users, mainly by (i) minimizing the

quantity of data that must be provided to exploit the service, and (ii) utilizing the same information

input methodology that is used throughout the system, and that the user is supposed to be already

familiar with.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 26 of 28

Figure 7: The EasyReach Main screen

Figure 7 depicts the main screen which is presented to the user as she/he logs in. As Figure 7 shows,

the agenda service is accessed by activating the “Open Agenda” command button (right side, 2
nd

button from the top). By pressing the button, the information area of the screen changes as shown in

Figure 8.

The environment presented to the user does not offer many differences relatively to the ordinary

contact or group message exchange screen. The whole EasyReach GUI is built making extensive

use of recurring graphical elements, possibly arranged according to slightly varying layouts, in

order not to confuse the user. In this particular case, the list of all received notifications (i.e., the

messages) is still present at the top-left of the view in the “Agenda” box, and all messages are

presented in the familiar fashion. The same holds for the “Reminder preview” box (bottom-right),

which can be used to enjoy a preview of the newly created notification before it is added to the

agenda. The “Past Activities” box (top-right) contains all the past notifications that have already

been notified to the user, and represents a slightly new element with respect to the contact or group

message reading page.

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 27 of 28

Figure 8: The EasyReach Agenda screen

From the “utilization familiarity” standpoint, the only really new element is therefore represented

by the “New reminder” box (bottom-left). In this section, the user is requested to provide two types

of information: (i) the data (i.e., date and time) about when the reminding will have to be notified to

the user, and (ii) the contents of the reminding itself. The date and the time of the notification can be

provided in a straightforward fashion by acting on the “Date” and “Time” button arrows, (day-

month-year, and hour-minutes, respectively), while the contents of the reminder can be recorded by

the user as an ordinary audio file, by pressing the “Record a reminder” button. It should be

underscored that, in order to facilitate the utilization of the agenda, the creation of a reminder audio

file follows exactly the same procedure as the creation of any other audio message to be sent to one

of the user’s contacts or groups. Once the reminder is created, its contents can be listened back by

clicking on the “Reminder preview” box, before definitely adding the message to the agenda by

means of the “Create new reminder” button.

From the user’s utilization perspective, the management of all the created messages, as well as their

fruition mechanism, is organized according to the following logic:

 as previously stated, all the newly created messages will appear in the “Agenda” box,

together with all the previously created messages not yet notified to the user

 as each reminder is notified to the user (i.e., the user positively acquires the message), it is

moved to the list in the “Past Activities” box. Caveat: all the messages in the “Past

Activities” box will remain visualized for the entire duration of the current session only; as

the user logs out, all the past messages will be deleted as no longer useful and will not be

EASYREACH is a Project of the AAL

 Program (Call 2009-2)

UNIPOTS, CNR D3.3 – vers. 1.5 DISSEM. LEVEL

16/09/2013 Page 28 of 28

visualized again, in order not to overload the visual representation

 all the messages in the “Agenda” box that could not be delivered to the user (e.g., the user

never logged in during the day due for the notification) are however kept in the system, and

will be notified to the user immediately after her/his next login to EasyReach. In this way,

the user is kept informed of all the appointments she/he may have possibly missed.

All the agenda reminders are received by the user through exactly the same mechanism used for any

other type of message. In particular, any new incoming reminder message is accompanied by a

blinking of the EasyReach icon at the bottom-left of the GUI (see Figure 8), thus warning the user

that there are messages pending to be read, and that her/his attention is required.

10. References

[1] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press (2003)

[2] Jost, H., Sabuncu, O., Schaub, T.: Suggesting new interactions related to events in a social

network for elderly. In: Proceedings of the Second International Workshop on Design and

Implementation of Independent and Assisted Living Technology (2012)

[3] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:

Potassco: The Potsdam answer set solving collection. AI Communications 24(2), 105–124 (2011)

[4] Muscettola, N.: HSTS: Integrating Planning and Scheduling. Technical report, Robotic

Institute (1994)

