

Project FoSIBLE
Fostering Social Interactions for a Better Life of the Elderly

Deliverable

D5.2: Software Prototypes according to D5.1 Delivery date: M18

Responsible

AIT (Lead Contractor)

Participants

AIT

Version: 1.0
Date: 28.10.2011
Dissemination level: (PU, PP, RE, CO): PU

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 2 of 23

Abstract

D5.2 contains the detailed description of the software prototype for the gesture recognition
with the UCOS stereo sensor developed in the FoSIBLE project. The details on the software,
the underlying algorithms and its modules and the description of a prototype front-end used
for a demonstrator are given in this document.

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 3 of 23

Table of Content

1 Introduction ... 4

1.1 Purpose of the Document .. 4

1.2 Definitions, Acronyms and Abbreviations .. 4

2 Overview .. 5

2.1 Concept .. 5

2.2 Processing steps and modules ... 6

2.2.1 Real time data interface to UCOS Sensor and pre-processing ... 6

2.2.2 Feature extraction ... 6

2.2.3 Gesture analysis ... 6

3 Implementation .. 7

3.1.1 Data interface to UCOS Sensor and pre-processing ... 7

3.1.2 Feature extraction .. 10

3.1.3 Gesture analysis and Visual Inspection ... 17

4 Example results .. 19

5 References .. 21

6 Annex A ... 22

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 4 of 23

1 Introduction

1.1 Purpose of the Document

The purpose of this document is to report the details of the software prototype for gesture

recognition with the UCOS stereo sensor developed in the FoSIBLE project. The report

contains the details on the algorithms, their software implementation in the MATLAB

programming language, the description of the software modules and their interaction and a

prototype front-end to be used for in the project for online demonstration.

1.2 Definitions, Acronyms and Abbreviations

Acronym Description

FoSIBLE Fostering Social Interaction for the Well-Being of the Elderly

IF Interface

PC Personal Computer

AE(R) Address Event (Representation)

3D Sensor Devices that delivers spatial (three dimensional 3D) information of a
given scene , typical x,y and depth-z

SW Software

HW Hardware

TAE Timed address event data

OS Operating System

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 5 of 23

2 Overview
This chapter describes overall concept and processing steps of the software prototype.

2.1 Concept

The intention of integrating gestures for controlling the FoSIBLE application is to offer an

alternative to the tablet used as main input device. The users don’t need to grab anything

but can immediately start to interact with the system by just moving their hands. This is why

a simple trigger for initiating the gesture control is necessary e.g. waving a hand looking

directly at the TV.

Gestures are a natural input modality that evolved from real-world interaction styles being

more intuitive and easier to learn than indirect input modalities like remote controls.

The prototype software is optimized to allow an online demonstration and evaluation of the

gesture user interface running on a PC. It allows navigating a simple menu driven user

interface with move-up, down, left and right gestures. The processing chain starts in the

UCOS2XL stereo sensor [1] that extracts motion relative to the sensor by an biology inspired

“silicon retina” optical sensor [2][4], stereo correlates the motion information yielding depth

information and tracks motion nearest to the sensor [3]. In the case of gesture recognition

the motion tracked is the hand motion performed by the user.

Tracking the object nearest to the sensor is already implemented in the embedded software

of the device and the extracted tracks are also encoded in the UCOS2XL sensors timed

address events (TAE) data stream. When moving an arm in front of the device, performing

an arm gesture, it will therefore continuously output the position of the hand as being the

closed object. Figure 1 shows a sequence of still images of example tracking data (left pane)

and synchronous video (right pane) of a person performing a “circle” gesture with the right

arm. The continuous track of the hand performing the gesture is then analysed in the later

processing stages.

Figure 1 Sequence of still images of an example of raw hand tracking data from the UCOS2
sensor (left pane) and synchronous video (right pane) for a person performing a “circle”

gesture with his right arm.

These tracks are then extracted by the embedded software of the UCOS2XL stereo sensor

and are sent via Ethernet connection to the gesture processing software implemented on a

PC.

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 6 of 23

2.2 Processing steps and modules

2.2.1 Real time data interface to UCOS Sensor and pre-processing

The motion- and extracted tracking data from the UCOS2XL stereo sensor is received by

streaming binary data packets via UDP protocol over an Ethernet connection. Data is

transferred via defined UDP ports from the UCOS2XL device to a PC. The pre-processing of

these data performs extraction from the track data, containing the actual gesture, from the

rest of the motion data and de-noising of the extracted tracks. This includes the removal of

outliers and duplicate tracks that may occur in the data.

The begin and the end of each gesture is sensed by monitoring the sensor data rate and a

data rate falling below a threshold marks the end of a track. Full tracks are then sent further

to the feature extraction module.

2.2.2 Feature extraction

Features are extracted on the same time basis as the UCOS2XL sensor generates the data,

i.e. a 100 Hz sampling rate. The feature extraction units use the data received from pre-

processing and derive explicit feature from tracks. Typical feature are the track-length,

speed, acceleration, orientation, Bounding-Box characteristics or activity (detailed

description of the features see “Implementation” chapter). “Strong” features that will allow

robust gestures detection are those that are invariant to the size and position of the gesture.

Each gesture is represented by a combination of some of the features. The length of a track

is the sum of distance between all points of the track. Since this feature is depends on the

amplitude of the gesture-movement length will not be a strong feature. Speed, representing

how fast a hand is moved to perform a gesture, is another weak feature, since it has on one

side a big variation depending on the person performing the gesture, but there will be no big

difference between the gestures. A much stronger feature is the orientation of the gesture

movement, since each gesture has a distinguished direction, which can also be detected on

sensor data. The Bounding-Box characteristics are the area covered by a box around the

gesture movement and the ratio of the side lengths of the box. The Bounding-Box Area is not

independent to the amplitude of the gesture-movement, but highly characteristic for each

gesture and therefore a strong feature. Another very strong feature is the Bounding-Box

ratio, which is very characteristic for each gesture. The acceleration of the gesture-

movement might be used to distinguish how intentional a gesture is performed.

The features for a gesture are stores in time depended feature value during the gesture and

is send further to the gesture analysis module.

2.2.3 Gesture analysis

For the software prototype rule based gesture recognition has been implemented. The time

depended feature values are analysed based on a set of simple rules, regarding the

occurrence of orientation, bounding box ratio etc. within the feature data. Depending on the

result of this rule based analysis the gesture is classified and the respective command is sent

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 7 of 23

to the GUI to trigger an action. The details of the rule based analysis are described in the

chapter “Implementation”.

Note that for the stable software prototype, planned later in the project, the

implementation of gesture analysis based on Hidden Markov Model classifiers is foreseen.

These will not result in a single selected gesture based on rules but on a probability vector

that describes the probability of the gesture to represent each of the possible gestures.

3 Implementation
This chapter describes the detailed implementation of the processing steps of the software

prototype including partly the Matlab function code.

3.1.1 Data interface to UCOS Sensor and pre-processing

The AE Stream is recorded from the Sensor is recorded from the Sensor using the Smart Eye

Center. This Data is imported into Matlab. The code below shows the complete pre-

processing chain for a single set of tracks. The function ae_bin2mat is used to import hte

binary data into a Matlab structure which enables the further processing steps. In the

second step, using the function ae_trackfilter all AEs not containing track information are

removed and only the tracks are stored. Then the data is converted to the 2x32bit ITN

Format using the command eth2itn. After this duplicate tracks are removed from the tracks

(removeduplicate tracks) and all a final filter is run over the converted data to remove

short tracks (trackfinder2).

%import previously recorded binary data to matlab structure
ae_all_left = ae_bin2mat('C:\Users\zimam\Documents\recordings\left\SmartEye

UCOS2_20110826_144849.bin');
%filter out the AEs representing tracks
ae_tracks_left = ae_trackfilter(ae_all_left,4);
%convert AE to 2x32bit ITN Format
ae_tracks_left_itn=eth2itn(ae_tracks_left,bitmask(129));
%just keep single tracks, with a certain length and remove duplicate tracks

%tracks are separated by “NaN” Markers
Tr_left=trackfinder2(removeduplicate tracks(ae_tracks_left_itn),10,15);

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 8 of 23

Figure 2 Data Format containing especially coded bits to identify tracks in the AE Stream

The tracks are especially tagged in the bit stream, which makes it easily possible to filter

them out. The data format used has this information coded into 3 Bits, which each bit

combination standing for another type of AE (Figure 2). In this case the Tracks can be

identified as AE type 0x03. To filter the tracks it is necessary to apply a bitmask to the

recorded data. AEs, where the masked bits match are kept and returned as reduced set of

AEs, just containing the desired data. To filter the tracks out of the mask number four

(maskinfo(4)) has to be applied to the dataset (as there is no zero element in Matlab).

% bitmasks
% 10987654321098765432109876543210
% 3 2 1 0
maskinfo(1) = uint32(bin2dec('00000000000000000000000000000000')); % Stereo

Evens (do nothing)
maskinfo(2) = uint32(bin2dec('00000010000000000000000000000000')); %

Scanlines
maskinfo(3) = uint32(bin2dec('00000100000000000000000000000000')); %

Counter numbers
maskinfo(4) = uint32(bin2dec('00000110000000000000000000000000')); % Tracks
maskinfo(5) = uint32(bin2dec('00001000000000000000000000000000')); %

Crosses on beginning of tracks

%check the status of the tree masking bits
mymask = uint32(bin2dec('00001110000000000000000000000000'));

%apply mask
index = find (bitand(ae(1,:),mymask)==maskinfo(type));

%if tracks have been found, just store the tracks
if (~isempty(index));
 ae = ae(:,index);
else ae = [];
end;

To be able to derive features from the tracks some pre-processing is required. In a first step

duplicate tracks of the tracks have to be removed. These duplicate tracks occur, because the

tracks coded within the datastream have a certain persistence, which means, that they are

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 9 of 23

transmitted more than once. To reduce the amount of data these duplicate tracks are

removed from the AE data.

%find and remove all AEs with the same timestamp
Index = find ((diff(A1.tt)==0));
A1=aeDel(A1,Index);

%find and remove all AEs with the same xy coordinates
%Reason: tracks are drawn more than once...
Index=NaN;
while(~isempty(Index))
 Index = find ((diff(A1.x)==0) & (diff(A1.y)==0));
 A1=aeDel(A1,Index);
end

Furthermore tracks, which are too short or who contain a much too little number of points

are filtered out to just keep track with enough information for further processing. This is

done by counting the number of points which represent the track. If this number is under a

certain value the track is considered illegal will be deleted and therefore ignored for feature

extraction. A comparison between unfiltered an final track data can be seen in Figure 4.

%calculate delax and deltay
deltax=diff(A1.x);
deltay=diff(A1.y);

%calculae distance using pytagoras
dist=sqrt(deltax.^2+deltay.^2);

Index = find ((dist>deltamax));
A1.x(Index+1)=NaN;
A1.y(Index+1)=NaN;

% count number of points between NaN's
% if track is shorter than "tracklength" set point's to NaN
points=0;
NaNcount=0;
elements=size(A1.x);
Index = zeros(1,elements(2));
for ind1=1:elements(2)
 if ~isnan(A1.x(ind1)) %keep count the number of points
 points=points+1;
 NaNcount=0;
 end;
 if(isnan(A1.x(ind1)))
 NaNcount=NaNcount+1;
 if(NaNcount>1) %keep only one NaN to seperate Tracks
 Index(ind1)=1;
 end;

 if(points>0)
 if (points<=pointcount)
 position=ind1-points;
 for ind2=position:ind1 %remove too short tracks
 Index(ind2)=1;
 end;
 end;
 points=0;

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 10 of 23

 end;
 elseif(ind1==elements(2));
 if(points>0)
 if (points<=pointcount)
 position=ind1-points;
 for ind2=position:ind1 %remove too short tracks
 Index(ind2)=1;
 end;
 end;
 points=0;
 end;
 end;
end;

Index = find(Index == 1);
A1=AeDel(A1,Index);

elements=size(A1.x);
for ind3=elements(2):-1:1
 if isnan(A1.x(ind3));
 A1=AeDel(A1,ind3);
 else
 break;
 end;
end;

3.1.2 Feature extraction

This section describes each feature including the code for the extraction and the data

structures.

Each track detected by the sensor has characteristic features. These Features are used to

identify the meaning of the track. The more distinctive features could be extracted of a

track, the higher is the significance of the track data.

Currently implemented extracted features are length, sped, orientation, Bounding Box Ratio

(BBRatio) and Bounding Box Area (BBArea). The calculation of these features is described in

detail in the section below.

The Input for all functions are the coordinates of the points representing the track including

the relative time from the beginning of the track as timestamp, output off all functions is a

feature vector containing the development of the feature over the time .

3.1.2.1 Length

The length of a track is defined as the accumulated sum of all distances between adjacent

points. The distance between them is calculates using the Pythagorean Theorem. The result

of this calculation is then summarized to the previous calculated distances (dist).

 , ,…

 , ,…

The variables Δx (deltax) and Δy (deltay) represent the difference of the coordinates of the

points in an Cartesian coordinate system. They also can be interpreted as an adjacent and

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 11 of 23

opposite site of a right triangle which enables using the Pythagorean Theorem and basic

trigonometric functions for further calculations.

 ∑√

For the early prototype the calculations are done using Matlab, the code below implements

the described functionality. At the moment this code is written to be executed on a set of

tracks, which are separated by “NaN”-Elements, which mark the end of a track.

%calculate delax and deltay
deltax=diffn(Tr.x,param);
deltay=diffn(Tr.y,param);

%calculae distance using pytagoras
dist=sqrt(deltax.^2+deltay.^2);

%add NaN at beginn of dist (dist has now the length of the original data)
dist=[NaN dist];

elements=size(dist);

F1.tracklenght=zeros(1,elements(2));
NaNfound=false;

for ind1=1:elements(2)
 if isnan(dist(ind1))
 %first NaN marks the beginning of a track, length is 0 at this
 %point
 if(~NaNfound)
 F1.tracklenght(ind1)=0;
 NaNfound=true;
 %second NaN is the track seperator - should be kept
 else
 F1.tracklenght(ind1)=NaN;
 NaNfound=false;
 end;
 else
 F1.tracklenght(ind1)=F1.tracklenght(ind1-1)+dist(ind1);
 end;
end;

%keep the original timestamp in the feature
F1.tt=Tr.tt;

3.1.2.2 Orientation

A very important feature to identify the meaning of a track is the orientation. The

Orientation of a track can be defined in several ways, in this case two different approaches

are chosen. One realized option is to calculate the angle between adjacent points; the other

realized option is to calculate the angle from the first point to each other point.

Again the variables Δx (deltax) and Δy (deltay) represent the difference of the coordinates

of the points in an Cartesian coordinate system, calculation is done the same way as for

length. These values are used to calculate the angle (F1.alpha) in the rectangular triangle

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 12 of 23

formed between adjacent points. To do so just a basic trigonometric function, the

arctangent is used. The result of this function lies in an interval between –π and +π.

For the early prototype the calculations are done using Matlab, the code below implements

the described functionality. This code is written to be executed on a set of tracks, which are

separated by “NaN”-Elements, which mark the end of a track.

%calculate delax and deltay
deltax=diffn(Tr.x,param);
deltay=diffn(Tr.y,param);

%add NaN at end of deltax and deltay (length of the original data)
deltax=[NaN deltax];
deltay=[NaN deltay];

F1.alpha=atan2(deltay,deltax);

elements=size(F1.alpha);

NaNfound=false;

for ind1=1:elements(2)
 if isnan(F1.alpha(ind1))
 %first NaN marks the beginning of a track, angle is 0 at this
 %point
 if(~NaNfound)
 F1.alpha(ind1)=0;
 NaNfound=true;
 %second NaN is the track seperator - should be kept
 else
 F1.alpha(ind1)=NaN;
 NaNfound=false;
 end;
 end;
end;

%keep the original timestamp in the feature
F1.tt=Tr.tt;

As described alternatively the angle between the first point and all other points of a track is

used as feature. The calculation of the angle is done mostly the same way as described for

the calculation for the orientation between adjacent points, but the variables Δx and Δy are

now calculated relatively to the first point.

 , ,…,

 , ,…,

For the early prototype the calculations are done using Matlab, the code below implements

the described functionality. Note: the especially written function diff_1toend()returns the

distance between the first coordinate and all other coordinates as an vector.

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 13 of 23

%calculate delax and deltay
deltax=diff_1toend(Tr.x);
deltay=diff_1toend(Tr.y);

%add NaN at end of deltax and deltay (length of the original data)
deltax=[NaN deltax];
deltay=[NaN deltay];

F1.alpha=atan2(deltay,deltax);

elements=size(F1.alpha);

NaNfound=false;

for ind1=1:elements(2)
 if isnan(F1.alpha(ind1))
 %first NaN marks the beginning of a track, angle is 0 at this
 %point
 if(~NaNfound)
 F1.alpha(ind1)=0;
 NaNfound=true;
 %second NaN is the track seperator - should be kept
 else
 F1.alpha(ind1)=NaN;
 NaNfound=false;
 end;
 end;
end;

%keep the original timestamp in the feature
F1.tt=Tr.tt;

3.1.2.3 Bounding Box Ratio (BBRatio) and Bounding Box Area (BBArea)

The Bounding-Box characteristics are the area covered by a box around the gesture

movement and the ratio of the side lengths of the box. To calculate this characteristics the

maximum and minimum value for x and y have to be determined.

This is done by comparing each of the values to another. When a minimum or a maximum is

found, the value is stored and becomes the new minimum or maximum value, which is then

compared to the rest of the values.

When minimum and maximum for x an y are determined the bounding box characteristics

are calculated. This is done after each checked coordinate, so that the bounding box

characteristics change, when the maxima/minima change.

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 14 of 23

Figure 3 Bounding Box (red) around a track (blue)

Since the Bounding Box is a rectangle (red in Figure 3) the covered Area (light red in Figure 3)

is calculated by multiplying the sides forming the rectangle with each other. The length of

the sides (Δx, Δy in Figure 3) is represented by the four furthermost coordinates (xmax, xmin,

ymax, ymin in Figure 3). The Ratio between the sides is then used as feature too. If the side Δy

has a side of zero, the Ration between the sides is also set to zero.

 ;

The Bounding-Box characteristics are calculated for each pair of variables while the vector

containing the Track information is stepped trough by a loop. If there is no change, the old

value is kept as characteristic, in case of a change the maximum of the BBArea is kept, the

BBRatio changes as the BBArea changes.

In the code Matlab code below, the variables of the formulas can be identified as followed:

xmax (xmax); xmin (xmin); ymax (ymax); ymin (ymin); Δx (deltax); Δy (deltay)

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 15 of 23

For the early prototype the calculations are done using Matlab, the code below implements

the described functionality. This code is written to be executed on a set of tracks, which are

separated by “NaN”-Elements, which mark the end of a track.

%initialzie help variables:

xmax=Tr.x(1);
xmin=Tr.x(1);
ymax=Tr.y(1);
ymin=Tr.y(1);
F1.BBarea(1)=0;
F1.BBratio(1)=0;

elements=size(Tr.x);

for ind1=2:elements(2)

 if (isnan(Tr.x(ind1)) && (ind1 < elements(2)))

 %if there is a new track reset calculation

 xmax=Tr.x(ind1+1);
 xmin=Tr.x(ind1+1);
 ymax=Tr.y(ind1+1);
 ymin=Tr.y(ind1+1);
 F1.BBarea(ind1)=NaN;
 F1.BBarea(ind1+1)=0;
 F1.BBratio(ind1)=NaN;
 F1.BBratio(ind1+1)=0;
 ind1=ind1+2;
 else
 if(Tr.x(ind1)>xmax) %check if current x value is bigger
 xmax=Tr.x(ind1);
 end;
 if(Tr.x(ind1)<xmin) %check if current x value is smaller
 xmin=Tr.x(ind1);
 end;
 if(Tr.y(ind1)>ymax) %check if current y value is bigger
 ymax=Tr.y(ind1);
 end;
 if(Tr.y(ind1)<ymin) %check if current y value is smaller
 ymin=Tr.y(ind1);
 end;

 %recalculate maxima and minima
 deltax=(xmax-xmin);
 deltay=(ymax-ymin);

 %calculate BBarea

 F1.BBarea(ind1)=deltax*deltay;
 if(deltay~=0) %Capture divide by zero and then calculate BBratio
 F1.BBratio(ind1)=deltax/deltay;
 else
 F1.BBratio(ind1)=0;
 end;
 end;

end;

%keep the original timestamp in the feature
F1.tt=Tr.tt;

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 16 of 23

3.1.2.4 Speed

Another extracted feature is the speed of the expansion of a track. This expansion speed is

calculated using the distance between two points and also use the time difference Δt to

calculate the speed. Again the variables Δx (deltax) and Δy (deltay) represent the distance

(dist) between the points in a Cartesian coordinate system, calculation is done the same

way as for length (using Pythagoras Theorem). As the speed is defined as covered distance

divided by time the differential timestamp Δt (Tr.t) is used exactly for this calculation.

√

For the early prototype the calculations are done using Matlab, the code below implements

the described functionality. This code is written to be executed on a set of tracks, which are

separated by “NaN”-Elements, which mark the end of a track.

%calculate delax and deltay
deltax=diffn(Tr.x,param);
deltay=diffn(Tr.y,param);

%calculae distance using pytagoras
dist=sqrt(deltax.^2+deltay.^2);

%add NaN at end of dist (dist has now the length of the original data)
dist=[NaN dist];

elements=size(dist);

F1.speed=zeros(1,elements(2));
NaNfound=false;

for ind1=1:elements(2)
 if isnan(dist(ind1))
 %first NaN marks the beginning of a track, length is 0 at this
 %point
 if(~NaNfound)
 F1.speed(ind1)=0;
 NaNfound=true;
 %second NaN is the track seperator - should be kept
 else
 F1.speed(ind1)=NaN;
 NaNfound=false;
 end;
 else
 F1.speed(ind1)=(dist(ind1))/Tr.t(ind1);
 end;
end;

%keep the original timestamp in the feature
F1.tt=Tr.tt;

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 17 of 23

3.1.3 Gesture analysis and Visual Inspection

To identify strong features it is required to perform a visual inspection of the collected

features for each specific gesture. All collected feature vectors of a certain type of track are

therefore overlaid, to distinguish certain accumulations in the features. Therefore all Feature

vectors are processed to have a common start point in time – which is zero, marking the

beginning of a track.

tempt=[NaN FV(1,1:end)];
nansource=[NaN FV(2,1:end)];

elements=size(tempt);

tout=zeros(1,elements(2));
NaNfound=false;

%calculate the timstap relative to the beginning of a track
for ind1=1:elements(2);
 if isnan(nansource(ind1))
 tout(ind1)=NaN;
 NaNfound=true;
 else
 if(NaNfound);
 tout(ind1)=0;
 NaNfound=false;
 else
 tout(ind1)=tout(ind1-1)+(tempt(ind1)-tempt(ind1-1));
 end;
 end;
end;

%keep the modified feature vector.
mod_FV=[tout(2:end);FV(2:end,:)];

The so processed data is used to generate a map of containing all the features for all

specified kind of gestures. In this map obvious differences in the features are clearly visible.

If differences in the features are clearly visible by the human eye, it is highly possible, that

these differences can also be used by algorithm to identify a gesture. The following Matlab

Code produces such an overview. The results of such a Plot can be seen in Figure 6 and

Figure 7.

%load names and features

names={'leftdown';'rightup';'rightdown';'roof';'wave'};
FVtoload={F_leftdown1;F_rightup1;F_rightdown1;F_roof1;F_wave1};
tracks={Tr_leftdown;Tr_rightup;Tr_rightdown;Tr_roof;Tr_wave};

elements=size(names);
elements=elements(1);
numplots=7; %number of features, currently 7
count=0;

figure('units','normalized','position',[0,0,1,1]);

for i=1:elements

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 18 of 23

 %FV=[F1.tt;F1.tracklenght;F2.alpha;F3.alpha;F4.speed;

 % F5.BBratio;F5.BBarea];

 FV=FVtoload{i,1};
 FV=Feature_plot_preparation(FV);
 track=tracks{i,1};

 % generate a plot… On top: recorded tracks, below: all extracted

 % features put a certain number of tracks and features next to each

 % other

 subplot(numplots,elements,i);
 plot3(track.x,track.y,track.tt);
 title(names(i));
 subplot(numplots,elements,i+elements);
 plot(FV(1,:),FV(2,:),'.')
 set(gca,'xlim',[0,5000],'ylim',[0,200]);
 title(strcat(names(i),' length'));
 subplot(numplots,elements,i+(elements*2));
 plot(FV(1,:),FV(3,:),'.')
 set(gca,'xlim',[0,5000],'ylim',[-4,4]);
 set(gca,'YTick',[-pi -pi/2 0 pi/2 pi]);
 title(strcat(names(i),' orient'));
 subplot(numplots,elements,i+(elements*3));
 plot(FV(1,:),FV(4,:),'.')
 set(gca,'xlim',[0,5000],'ylim',[-4,4]);
 set(gca,'YTick',[-pi -pi/2 0 pi/2 pi]);
 title(strcat(names(i),' orient (begin to end)'));
 subplot(numplots,elements,i+(elements*4));
 plot(FV(1,:),FV(5,:),'.')
 set(gca,'xlim',[0,5000],'ylim',[0,0.6]);
 title(strcat(names(i),' speed'));
 subplot(numplots,elements,i+(elements*5));
 plot(FV(1,:),FV(6,:),'.')
 set(gca,'xlim',[0,5000],'ylim',[0,10]);
 title(strcat(names(i),' BBratio'));
 subplot(numplots,elements,i+(elements*6));
 plot(FV(1,:),FV(7,:),'.')
 set(gca,'xlim',[0,5000],'ylim',[0,2000]);
 title(strcat(names(i),' BBarea'));

 count=count+numplots;

end

For each collected feature a histogram is generated and analyzed, searching for the

maximum accumulation of data points and the magnitude of the feature. A combination of

these results is used for a simple rule based decision mechanism, which will then select the

gesture. So for example if a high accumulation around –pi/2 is detected and all the other

features show no special behaviour, the gesture “right” is selected.

This decision is then handed over to the demonstration GUI, which will then perform an

action according to the received gesture, like moving the selection field on step to the right

side. The Demonstration GUI is described in [6].

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 19 of 23

4 Example results
This chapter shows example data of gestures, tracks and features stemming from the

different processing steps of the software prototype as described in the previous chapter.

Effects occurring in real data are described and discussed with respect to their influence on

the stability and the result of the recognition.

Figure 4 Recorded tracks for a circular gesture, unfiltered data containing duplicate tracks and
outliners on the left side, data after processing on the right side

Using a space-time representation Figure 4 shows the unprocessed recorded tracks for a

circular gesture on the left side. It is clearly visible, that unfiltered track information contains

a lot of useless data and no clear tracks are visible within this enormous amount of track

information. Therefore the outliners, duplicate tracks and much too short tracks are

removed from the data, just keeping reasonable tracks which allow a clear interpretation in

the further processing steps (right side). These tracks are then used for feature extraction as

described above.

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 20 of 23

Figure 5 Extracted features for 5 different gestures.

Gesture data are organized in columns in the Figure 5. The previously recorded ideal test
tracks are shown in a space-time presentation the top row axes. The extracted features track
length, orientation, bounding box ratio and bounding box area for the first 5 seconds of each
track are shown in the four rows below. Each gesture is represented by a set of significant
values of some of the features. Significant feature values are indicated by black circles.

The length of a track is the sum of distance between all points of the track. Since this feature

depends on the amplitude of the gesture-movement length will not be a strong feature.

A much stronger feature is the orientation of the gesture movement, since each gesture has

a distinguished direction, which can also be detected on sensor data. In Figure 5 the

orientation is labelled as “angle” and as marked, accumulations

The Bounding-Box Area is not independent to the amplitude of the gesture-movement, but

highly characteristic for each gesture and therefore a strong feature. Another very strong

feature is the Bounding-Box ratio, which is also very characteristic for each gesture.

Time (s)

p
ix

e
l²

a
n

g
le

p
ix

e
l

T
im

e
 (

s
)

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 21 of 23

5 References

[1] UCOS2 data sheet - http://www.ait.ac.at/research-services/research-services-safety-
security/new-sensor-technologies/development-of-embedded-systems-for-customer-
specific-solutions/smart-eye-ucos-universal-counting-sensor/?L=1 as of 2011-08-31

[2] “Lichtsteiner, P.; Posch, C.; Delbruck,; “ A 128x128 120dB 30mW asynchronous vision sensor
that responds to relative intensity change”; IEEE International Solid-State Circuits
Conference, ISSCC 2006; San Francisco; S³ Digital Publishing, Inc., Lisbon Falls, Maine; ISBN:1-
4244-0079-1; pp. 508-509, 669; February, 5.-9., 2006.

[3] Milosevic, N.; Schraml, S.; Schön, P.; ”Smartcam for real-time stereo vision – address-event
based Stereo Vision”; INSTICC – Inst. f. systems and technologies of information, control &
communication; INSTICC Press, Portugal; ISBN: 978-972-8865-74-0; p. 466-471, March, 8-11,
2007

[4] Mead, Carver Silicon retina. In: Mead C, editor. Analog VLSI and neural systems. Reading,
Mass: Addison-Wesley, 1989:257–78.

[5] FoSIBLE Deliverable D5.1: “Report on requirements of software components and tools for
observation and tracking in laboratory and Living Lab environment.” Delivery date M16

[6] FoSIBLE Deliverable D5.5: “Prototypes of evaluation tools to test software components and
sensor.” Delivery date M18

http://www.ait.ac.at/research-services/research-services-safety-security/new-sensor-technologies/development-of-embedded-systems-for-customer-specific-solutions/smart-eye-ucos-universal-counting-sensor/?L=1
http://www.ait.ac.at/research-services/research-services-safety-security/new-sensor-technologies/development-of-embedded-systems-for-customer-specific-solutions/smart-eye-ucos-universal-counting-sensor/?L=1
http://www.ait.ac.at/research-services/research-services-safety-security/new-sensor-technologies/development-of-embedded-systems-for-customer-specific-solutions/smart-eye-ucos-universal-counting-sensor/?L=1

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 22 of 23

6 Annex A

Figure 6 Feature overview for visual inspection for the first set of gestures

Project: FoSIBLE
D5.2 – Software Prototypes according to D5.1 - 28/10/11

Page 23 of 23

Figure 7 Feature overview for visual inspection for the second set of gestures

