

Deliverable reference: Date:

D3.1 19th November 2013

Title:

System Architecture Specification

Project Title: Responsible partner:

Helping elders to live an active and socially connect-

ed life by involving them in the digital society
IncreaseTime

Editors:

 Gil Gonçalves; Raquel Sousa

Contract no. AAL_08-1-2011-00011 (Magyar) Approved by:

AAL-2011-2

Classification:

Confidential

Abstract:

This report presents a description of the architecture of a web responsive application di-
rected to the “assisted living” market. It describes the technologies and presents the modular dia-
gram of the application and its components interaction.

Keywords:

http://www.aaliance.eu/public/news/aal-joint-programme-call-2-launched/image/imag

D3.1: System Architecture i

This page was intentionally left blank

D3.1: System Architecture ii

Project: HELASCOL

Contract no. AAL_08-1-2011-00011 (Magyar)

Start – End dates

Deliverable D3.1

Date November 2013

Version 6.0

NOTE:

Under the terms of contract for the implementation of the project, this report is confidential

and may contain references to inventions, know-how, drawings, computer programs, trade

secrets, products, formulas, methods, plans, specifications, designs, data or works covered

by intellectual/industrial property rights of the consortium members. This report may only

be used for evaluation of the project. Any other use requires prior written consent from the

consortium.

D3.1: System Architecture iii

This page was intentionally left blank

D3.1: System Architecture iv

Document History

Revision Date Author Organization Description

0.1 04.09.2013 Gil Gonçalves iTime
Initial Structure and

Content

0.2 10.09.2013 Raquel Sousa iTime Chapter 1 and 2

0.3 27.09.2013 Raquel Sousa iTime Chapter 3 and 4

0.4 18.03.2014 Raquel Sousa iTime Chapter 5 and 6

0.5 19.03.2014 Raquel Sousa iTime Chapter 2

0.6 03.04.2014 Ferenc Nemecsek Kapsch Chapter 4

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation or both.

D3.1: System Architecture v

This page was intentionally left blank

D3.1: System Architecture vi

Table of Contents

Glossary ... 1
1 Introduction ... 2

1.1 Project scope .. 2
1.2 Purpose of this document ... 2
1.3 Structure of the document .. 3

2 Technology Overview ... 4
2.1 ASP.NET ... 4
2.2 Microsoft SQL Server 2012 ... 4
2.3 XSockets.NET ... 4
2.4 AngularJS ... 4

2.5 ChatJS .. 4
2.6 D3.js ... 4
2.7 Google API’s ... 4

2.7.1 Google Calendar API ... 5
2.7.2 Google Contacts API ... 5
2.7.3 Google Gmail API ... 5
2.7.4 Google+ Sign-In .. 5

3 Logical Architecture .. 6
4 Physical Architecture .. 7

4.1 Component diagram ... 7

4.2 Deployment diagram .. 8
4.3 Physical architecture description ... 8

4.3.1 WebServer ... 8
4.3.2 Database .. 8
4.3.3 WebBrowser .. 8
4.3.4 Agent’s Device .. 8
4.3.5 Kapsch SEM server ... 8
4.3.6 Metering sensors .. 9

5 Key Design Decisions ... 10
5.1 MVC pattern .. 10
5.2 MVVM pattern... 10
5.3 CRUD .. 11
5.4 REST .. 11

6 Conclusion ... 12

D3.1: System Architecture 1

Glossary

HTML5: HTML5 is a markup language used for structuring and presenting content for the

World Wide Web and a core technology of the Internet.

CSS3: “CSS” is an acronym for Cascading Style Sheets, a web-based markup language used to

describe the look and formatting of a website to the browser, most commonly used in HTML

or XHTML web pages. “CSS3” simply refers to the latest incarnation of CSS, with additional

capabilities far beyond the scope of the first two generations.

JSON: JSON is short for JavaScript Object Notation, and is a way to store information in an

organized, easy-to-access manner. In a nutshell, it gives us a human-readable collection of

data that we can access in a really logical manner.

JQuery: A lightweight cross-browser JavaScript library that emphasizes interaction between

JavaScript and HTML.

ASP.NET: ASP.NET is a Web platform that provides services to build enterprise-class server-

based Web applications. ASP.NET is built on the Microsoft's .NET Framework. Applications

can be written in any language that is compatible with the common language runtime (CLR),

including Visual Basic and C#.

Web Service: A Web service is a method of communications between two electronic devices

over the World Wide Web. It is a software function provided at a network address over the

web with the service always on as in the concept of utility computing.

MVC: In object-oriented programming development, model-view-controller (MVC) is the

name of a methodology or design pattern for successfully and efficiently relating the user

interface to underlying data models.

ASP.NET MVC : ASP.NET MVC is a powerful, patterns-based way to build dynamic websites

that enables a clean separation of concerns and that gives full control over markup for en-

joyable, agile development. ASP.NET MVC includes many features that enable fast, TDD-

friendly development for creating sophisticated applications that use the latest web stand-

ards.

D3.1: System Architecture 2

1 Introduction

1.1 Project scope

The „Helping elders to live an active and socially connected life by involving them in the digi-

tal society” project addresses the objectives of the call by offering a 360 degree user in-

volvement methodology to examine how a new approach towards digital technologies can

be harnessed to support the involvement of elderly people in digital society. The proposal

intends to synthesize the skills, experience and knowledge of the consortium members in

developing a state-of-the-art platform and service package backed with feasible business

models which supports the on time and on budget realization and market introduction of

the call objectives.

The project focuses on providing an enriched communication experience, anywhere, any-

time and to any device with accessible, intuitive, easy to use, multimodal User Interfaces.

We believe that the right service and the right content are only accepted by the end users if

it is delivered on the right device, one that they are used to. This can be the screen of the

television, mobile phones, etc. Our goal is to enable elderly people, their family and social

surrounding to share their everyday experiences anytime, anywhere and help them make

use of existing and currently developed multimedia services to generate the sense of close-

ness and community belonging they are searching for. This enriched experience, which al-

lows users to share their emotions and experiences in a vivid and interactive way, requires a

new approach both in services and the technology that supports them.

1.2 Purpose of this document

The objectives to be achieved within WP3 consist on defining and specifying the overall sys-

tem and subsystems architecture and the definition of the external interfaces of the various

integrating modules. This comprises providing the architecture and specifications, including

the definition and description of the modules and subsystems inside it.

Specific objectives within WP3:

• UI specifications

• Service delivery platform specification

• Integration/interoperability requirements and specifications

• Identify ambient intelligent approaches and to use/integrate smart home technolo-

gies

Furthermore we are also to research more deeply elderly people’s habits for the use of ro-

bot control. In order to make smart home devices controllable we will base our approach on

the use of a tablet device with specific applications for smart home environments, based on

the underlying platform provide by the KeepCare© system from partner ITIME. This system

D3.1: System Architecture 3

is highly extensible due to a plug-in framework based on standard web-service technology,

making the integration of new functionalities in the system (e.g. control of smart devices in

the home environment) very straight forward.

With the lead of ITIME, the other partners (KECELCOM, SUPSI, KAPSCH) define the overall

system architecture having as reference the KeepCare© system architecture. In this task in-

tegration/interoperability requirements will also be defined.

A specification document that is to define the interdependency between the system and

subsystems and serve as a basis for the other development tasks is published in M16

1.3 Structure of the document

This report presents on section 2 the technological overview where the technologies select-

ed for developing the application are described. Sections 3 and 4 show the logical and physi-

cal architectures which corresponds, respectively, to the modular diagram of the application

and to the description of the various components that comprise the system to be develop. In

section 5, some solutions that have been exploited for the development of this application

are described. Section 6 concludes the report.

D3.1: System Architecture 4

2 Technology Overview

In this section we will describe the frameworks and technologies to be used on our applica-

tion. As a web application one must expect the usual platforms such as HTML5, CSS3, JSON,

JQuery, Bootstrap.

2.1 ASP.NET

The application will be constructed on the well know framework .NET. Being a web based

app ASP.NET will be the base for the development. .NET is a software framework developed

by Microsoft with a large reusable library of classes and a development environment that

helps developers rapidly and graphically build applications.

2.2 Microsoft SQL Server 2012

For our database we picked microsoft’s SQL Server 2012. It’s interactions with .NET are well

documented and its the go-to database when developing for this platform.

2.3 XSockets.NET

For the video module we intend on using XSockets.NET. XSockets.NET is a real time commu-

nication platform built on Microsoft.NET Technology that provides integration with WebRTC.

2.4 AngularJS

The client side of the application will be built on AngularJS. AngularJS is an open-source Ja-

vaScript framework, maintained by Google, that assists with running single-page applica-

tions. AngularJS lets you extend HTML vocabulary for your application. The resulting envi-

ronment is extraordinarily expressive, readable, and quick to develop.

2.5 ChatJS

We will be using ChatJS for our chat module. ChatJS is highly customizable and supports both

the SignalR and the long-polling adapter which are essential to important features such as

online and offline status.

2.6 D3.js

The visualisation of chart will be handled by D3.js. D3.js is a JavaScript library for manipulat-

ing data and allows us to create real-time graphics.

2.7 Google API’s

We will use several API’s supplied by google:

http://bl.ocks.org/mbostock/1256572

D3.1: System Architecture 5

2.7.1 Google Calendar API

The Google Calendar API allows a program to perform many of the operations available via

Google Calendar web interface. Using this API, it is possible to search for and view public

calendar events. Authenticated sessions can access private calendars, as well as create, edit,

and delete both events and the calendars that contain them.

2.7.2 Google Contacts API

The Google Contacts API allows client applications to view and update a user's contacts.

Contacts are stored in the user's Google Account; most Google services have access to the

contact list. The application use the Google Contacts API to create new contacts, edit or de-

lete existing contacts, and query for contacts that match particular criteria.

2.7.3 Google Gmail API

The Google Gmail API allows client application to manage client’s gmail inbox on behalf of a

user.

2.7.4 Google+ Sign-In

By adding Google+ Sign-In, you bring the power of Google to your site. When a user is signed

in, you get an OAuth token for making API requests on their behalf, which you can use to

better understand your user, connect them with their friends, and create a richer and more

engaging experience.

The first time a user clicks on the sign-in button, they will see an authorization dialog. This

dialog outlines how the application will use their data. The user then can consent to the au-

thorization or cancel. After authorizing, a returning user will not be prompted again for au-

thorization. A user always has the option to revoke access to an application at any time.

D3.1: System Architecture 6

3 Logical Architecture

In the following diagram we give an overview of the several modules that comprise our ap-

plication.

Figure 1. Logical architecture diagram

D3.1: System Architecture 7

4 Physical Architecture

In this section we describe the different components involved and how they are represented
in a physical environment.

4.1 Component diagram

Figure 2. Component diagram

D3.1: System Architecture 8

4.2 Deployment diagram

Figure 3. Deployment diagram

4.3 Physical architecture description

4.3.1 WebServer

The web server will be running on the .NET platform and providing web support via the

ASP.NET framework. It will also provide separate web server that implements the REST pro-

tocol for interactions with potential devices such as health and home sensors. This web

server will be hosted on the IncreaseTime facilities.

4.3.2 Database

The database will be created on SQLServer 2012 and it too wil be hosted on cloud.

4.3.3 WebBrowser

The client side will be defined on the user’s browser and will be supported by AngularJS to

create a seamless interaction with the WebServer.

4.3.4 Agent’s Device

The agent’s device will most likely be an android phone/tablet that connects to a sensor.

This device should be able to communicate with our WebServer via our WebService in order

to insert health and environmental data into our system.

4.3.5 Kapsch SEM server

Kapsch SEM server's task is to collect data received from the meters transferred over the da-

ta concentrator. Data concentrator is communicating over the in-house installed router and

D3.1: System Architecture 9

Internet modem. All the information received is stored on the MS SQL data base on the SEM

server. The received data is generally either consumption data or alarm information. In-

crease Time server receives the consumption data from SEM server over the web services.

Alarms that are coming from the meters and data concentrator are coming to SEM server as

the event occurs and SEM server sends this alarm information immediately to Increase serv-

er over another web service defined on the Increase server side. Consumption and alarms

are giving additional information on the in-house behavior of the elder people.

4.3.6 Metering sensors

Metering sensors in Helascol project comprise of the meters and bed presence sensor. The

bed presence senor is detecting whether the person is in the bed and over his node and

gateway the data is sent to Increase Time server. Meters are described in previous heading.

D3.1: System Architecture 10

5 Key Design Decisions

In order to achieve a more robust application it’s important to recognize that nowadays

there are good solutions for many of problems that may exist. This section describes some of

that solutions that will bring more confidence to the final product and will allow a lower de-

velopment time.

5.1 MVC pattern

The Model-View-Controller (MVC) pattern will be used in the server for separating the rep-

resentation of the database tables from the database operations and from the server re-

sponses (either HTML for the web application or JSON for the agents API or the web applica-

tion AJAX requests). Considering only the client side AngularJS also uses MVC empowering

the relation between HTML and JavaScript.

Figure 4. MVC pattern diagram

5.2 MVVM pattern

Considering the all system it’s used the Model-View-ViewModel (MVVM) pattern so that the

data being presented to the user is synchronized with the database. In this case as the model

is far (server-side) from the view (client-side) the MVC pattern is not applicable and the up-

dates to the model have to be made by the View Model that is in the client-side.

Figure 5. MVMM pattern diagram

D3.1: System Architecture 11

5.3 CRUD

The database CRUD operations will be done using the Entity Framework that allows devel-

opers to work on a higher abstraction level than SQL resulting in a less code application with

high robustness.

5.4 REST

Despite of not being a standard REST is known as a good practice to implement web services

because it ignores implementation details and enables users to better focus on their pur-

pose.

D3.1: System Architecture 12

6 Conclusion

In this preliminary report of architecture we presented a brief description of the technolo-

gies that will be used in the development of HELASCoL platform, as well as the diagram of

the modules and the application components. We also presented technical options that

were considered interesting for the development of the application and their main ad-

vantage and disadvantages.

This report should be considered as a preliminary report as the development of the applica-

tion itself has not started. In the development stage of the application a more complete re-

port of the architecture will be developed.

