AAL Programme AAL

SUCCESS - SUccessful Caregiver Communication
and Everyday Situation Support in dementia care PROGRAMME

PROJECT IDENTIFICATION

PROJECT NUMBER AAL-2016-089

DURATION 1%t March 2017 — 29" February 2020
COORDINATOR Markus Garschall

COORDINATOR ORGANIZA- AIT Austrian Institute of Technology GmbH
TION

WEBSITE www.success-aal.eu

SUCHESS

DOCUMENT IDENTIFICATION

DELIVERABLE ID D4.1b Functional specification and integrated architecture support
RELEASE NUMBER / DATE v1.0/16.08.2018

CHECKED AND RELEASED Markus Garschall (AIT)

BY

KEY INFORMATION FROM ‘DESCRIPTION OF WORK’

DELIVERABLE DESCRIPTION Report on the functional specification and architecture of SUCCESS. This deliver-
able summarizes the first version of architecture and specification definition
based on the output produced so far by the Use Case Definitions

DISSEMINATION LEVEL Public
DELIVERABLE TYPE Report
ORIGINAL DUE DATE M17 /31/07/2018

AUTHORSHIP & REVIEWER INFORMATION

EDITOR Ntalaperas Dimitrios (SIL), Vafeiadis Georgios (SIL)
PARTNERS CONTRIBUTING  EXT, AIT, UCY, CIT

REVIEWED BY Sabrina Stani (EXT)

Public

SUCHFSS



D4.1 Functional specification and integrated architecture report

ABBREVIATIONS

ABBREVIATIONS DESCRIPTION

APK Android Package Kit

D Dialogue Manager
Content Provider

Content Repository

Public SUC:)ESS



D4.1 Functional specification and integrated architecture report

TABLE OF CONTENTS

ABBREVIATIONS
TABLE OF CONTENTS

LIST OF FIGURES \Y
LIST OF TABLES 6
EXECUTIVE SUMMARY 7
1. ABOUT THIS DOCUMENT 7
1.1  ROLE OF THE DELIVERABLE 7
1.2 RELATIONSHIP TO OTHER SUCCESS DELIVERABLES 7
2. INTRODUCTION 7
3. SYSTEM ARCHITECTURE 8
4. ARCHITECTURAL VIEW MODEL 10
4.1  PHYSICAL VIEW 10
4.2  DEVELOPMENT VIEW 11
4.3  LOGICAL VIEW 12
4.3.1 OUTPUT PLATFORM 12
4.3.2 PROFILER 13
433 REWARDER 18
4.3.4 ADVISER 18
4.3.5 CONTENT PROVIDER 30
4.3.6 AVATAR 31
4.4  PROCESS VIEW 35
441 OUTPUT PLATFORM — DIALOGUE MANAGER 36
4.4.2 DIALOGUE MANAGER — CONTENT PROVIDER 36
4.5  INTERFACES 37
45.1 USER INTERFACES 38
4.5.1.1  Output Platform 38
45.1.2  Profiler 38
45.1.3 Rewarder 39
45.1.4  Adviser 39
45.1.5 Content Provider 39

Public

SUCHFSS



D4.1 Functional specification and integrated architecture report

4.5.2

4.5.1.6

45.2.1
4.5.2.2
4.5.2.3
4.5.2.4
4.5.2.5
4.5.2.6

REFERENCES

Avatar

Output Platform
Profiler
Rewarder
Adviser

Content Provider

Avatar

COMMUNICATION INTERFACES

40
40
40
40
41
41
42
43
44

Public

SUCHFSS



D4.1 Functional specification and integrated architecture report

LIST OF FIGURES

Figure 1:

Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Architectural Design

4+1 Architectural View Model

Deployment View of the Mobile Application
Development View of the Components
Logical View of Output Platform

Profiler Service implementation

Android dialogue manager service provision
Profiler implementation

Profiler database implementation

Figure 10: Profiler database interfaces

Figure 11: Adviser Service implementation

Figure 12: Adviser Service Utility implementation

Figure 13: Adviser Factory and Adviser implementation

Figure 14: Adviser Service instantiation and provision

Figure 15: Adviser Service interface methods

Figure 16: Adviser callback methods

Figure 17: Navigation and content model validation

Figure 18: Load Dialogue provision through the Adviser Service

Figure 19: Dialogue instantiation through the Dialogue Factory

Figure 20: Dialogue model validation

Figure 21: Dialogue callback interface

Figure 22: Dialogue interface and implementation

Figure 23: Logical View of Content Provider

Figure 24:

Speech Output Listener callback interface

Figure 25: Moods and Motions Java enumerations

Figure 26: Unity Player integration and callback interface

Figure 27: Avatar Android Fragment (Unity Player Fragment) usage in Dialogue Activity

Figure 28: Output Platform — Dialog Manager Process Flow Diagram

Figure 29: Dialogue Manager - Content Provider Process Flow Diagram

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
31

Unity Player Fragment with Unity Player Fragment interface implementation and Avatar

32
33
34
35
36
37

Public

SUCHFSS



D4.1 Functional specification and integrated architecture report

LIST OF TABLES

Table 1: User Interfaces of the Output Platform

Table 2: User Interfaces of the Profiler

Table 3: User Interfaces of the Rewarder

Table 4: User Interfaces of the Adviser

Table 5: User Interfaces of the Content Provider

Table 6: User Interfaces of the Avatar

Table 7: Communication Interfaces of the Output Platform
Table 8: Communication Interfaces of the Profiler

Table 9: Communication Interfaces of the Rewarder

Table 10: Communication Interfaces of the Adviser

Table 11: Communication Interfaces of the Content Provider

Table 12: Communication Interfaces of the Avatar

38
39
39
39
40
40
40
41
41
42
42
43

Public SU :)ESS



D4.1 Functional specification and integrated architecture report

EXECUTIVE SUMMARY

The present report documents the second iteration of the integrated architecture of the SUCCESS
platform as this is defined until M17 based on the output produced from T2.2: Definition of use
cases and scenarios. In terms of an agile approach this document constitutes the continuation of
the first iteration which was defined at M05. Based on the fact that the first integrated prototype
was implemented at M12 including all the components responsible for the execution of the de-
fined functionalities in the first iteration, the present architectural specification focuses on the 4+1
view model. This model is used for describing the architecture of software-intensive systems,
based on the use of multiple, concurrent views [1]. Each of these views is used to describe the
system and the role of each component to the integrated architecture from the perspective of
different stakeholders, such as end-users, developers and project managers.

1. ABOUT THIS DOCUMENT

1.1 ROLE OF THE DELIVERABLE

Specification and implementation of the SUCCESS Platform follows an agile and iterative process
whereas, in conjunction with the definition of use cases, the architecture is defined in incremental
steps with the aim of converging to a version that fully supports the desired functionality, as this is
defined by the use cases.

The present deliverable documents the second iteration of the functional specification and archi-
tecture specification of SUCCESS. Since the work of Use Cases is already defined, this iteration
provides a more accurate state of the architecture specification. This is the final version of the
document as it was scheduled for M17 and documents the full architecture which incorporates all
the details of the Use Cases.

1.2 RELATIONSHIP TO OTHER SUCCESS DELIVERABLES
The deliverable is related to the following SUCCESS deliverables:

DELIVERABLE RELATION

DPAPALai e el dlely Sislavies | D4.1 relies heavily on D2.2 since the details of the architecture and the func-
and Interaction Design Concept tional requirements should be defined as to fully cover the whole range of the
Use Cases.

D4.2 Security and privacy infra- D4.2 specifies the security and privacy infrastructure for the SUCCESS system
structure specification based on the architecture defined in the deliverable D4.1 at hand.

2. INTRODUCTION

The aim of SUCCESS is to provide an innovative training application on the user’s mobile device to
support and accompany formal and informal caregivers, and the public, to appropriately and ef-
fectively interact with persons with dementia, based on evidence-based communication and in-
tervention strategies for dementia. The present report presents the second version of the func-
tional specification and the integrated architecture of the SUCCESS platform. The architecture of

Publie SUCHFSS



D4.1 Functional specification and integrated architecture report

SUCCESS is designed based on the communication and interfacing of various components of the
system. More specifically, the interaction among components is based on interfacing through li-
brary modules, where each library consists of one or more components that compose the overall
architecture as defined in the first iteration of D4.3 Specification and Implementation of the Inter-
action Platform. Each component is deployed as a micro service, and, for development purposes,
as an artifact to a nexus repository, which is part of the development infrastructure that relies on
an agile methodology where multiple software releases take place during the development phase.

While the design of the architecture and the definition of the specifications follow an agile ap-
proach, the final version of the requirements definition and system architecture follow the work
produced in the context of D2.2 Use Cases, Scenarios, Service and Interaction Design Concept. To
this end, the architecture is designed towards fulfilling the range of the defined functionalities that
the SUCCESS platform must provide to the users. For better understanding of this architectural
approach around different perspectives, the 4+1 model view is used and analysed in the present
document.

3. SYSTEM ARCHITECTURE

Even though the development phase of the platform is still in progress, the functionalities that the
application should perform are defined and the development team is continuously working on
these aspects. Therefore, taking under consideration the results of T2.2: Definition of uses cases
and scenarios, the SUCCESS Platform must satisfy a specific set of functionalities which can be
summarized as follows:

e Allow users to register and personalize their application settings and personal profile in-
formation

e Provide guidance to users regarding a specific situation, both in terms of offering advice
per the criteria set by the user and in terms of offering training to the user

e Provide training to the users so they can learn about communication strategies when deal-
ing with persons with dementia

e Offering suggestions and information to users on how to provide for a meaningful life to
persons with dementia

e Advising users on how to offer emotional support to persons with dementia.
e Provide the means to users for evaluating the system.

Due to the fact that the SUCCESS platform aims to satisfy the aforementioned functionalities that
derived from user requirements, Figure 1 demonstrates the high-level architecture which is com-
posed by a set of application components. These components are considered as the backbone of
the application as can be realized in the following sections of the document where the exact func-
tionalities that they satisfy are defined. Briefly, the main components of SUCCESS are:

e The Output Platform which is responsible for rendering the user interface that will allow
the user to interact with the system.

e The Dialogue Manager which is the central part of the SUCCESS application and consists of
three parts, the profiler, the rewarder and the adviser, which interact with each other and
also with other components of the application.

Public SU :)ESS



D4.1 Functional specification and integrated architecture report

0 The Profiler which administers data about the user in a user model and makes
them available to the Output Platform.

0 The Rewarder that generates feedback to the user by choosing appropriate feed-
back for performance measures from the system which is derived from the profiler.

0 The Adviser which produces an advising entity which is for certain use cases visually
and audibly represented by the avatar component and provides dialogue interac-
tion with the user from content nodes that contain dialogue models.

The Affective Avatar that provides the means to produce visual and audible feedback to
the user in a livelier and more natural form.

The Content Provider which is the backend component that is responsible for managing
and providing the contents that are presented to the Users.

Output Platform -

User
model

v Device

Adviser % Profiler Rewarder

Dialogue Manager

% Content Provider

Public

SUCHFSS



D4.1 Functional specification and integrated architecture report

4. ARCHITECTURAL VIEW MODEL

The architectural view model that initially introduced in chapter 2 consists of four main views and
is used for the detailed description from different perspectives of the implemented architecture in
the context of SUCCESS. Figure 2 gives an overview of the model that aims to describe the archi-
tecture using five concurrent views. These views can be summarized as: the development view,
the logical view, the physical view and the process view. The fifth view denotes use cases, or sce-
narios that derived from D2.2 Use Cases, Scenarios, Service and Interaction Design Concept. The
following subsections provide a more detailed definition of each type of view where the interac-
tion of the components of the system is presented from a different point of view per case.

Logical Development
view view

v * * '
R System *
& environment .
Process . Physical
view view

4.1 PHYSICAL VIEW

The physical view denotes the physical locations of the software and the physical connections be-
tween the software components of the system. Also, it can be considered as a deployment view.

SUCCESS, since it is an Android application, can be distributed and installed via an APK file. The
APK file includes the code along with any required data and resource files into an Android applica-
tion archive file with the APK suffix. The APK file represents an Android application to be deployed
to the mobile devices that support Android operating system. Therefore, SUCCESS is presented
through a typical deployment view of an android application, which is composed by several appli-
cation components, where each component performs a different role in the overall application
behaviour. Figure 3 represents the deployment view of the SUCCESS mobile application.

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

s <<Cloud Services>>

<<mobile device>> @

<<Android Application>>
success.apk

<<compiled classes>>
classes.dex

<<compiled resources>>
resources.arsc

<<deploy>>
_____ - < <executionEnvironment>>
<<uncompiled resources=>> Android
res

< <deployment spec>>
AndroidManifest.xml

4.2 DEVELOPMENT VIEW

The development view presents the system from the programmer's perspective and is focused on
software management and the demonstration of the components based on their relationship in
the development environment. In this context, Figure 4 illustrates the components of the SUCCESS
system as pieces of software, and their interrelationships.

More specifically, all the application components of the system are demonstrated as well as the
assembly connectors which connect the provided and requested interfaces. Figure 4 provides a
depiction of the level 1 Component Diagram, where a more detailed interconnection of the appli-
cation components is presented. Each represented component is a modular part of the applica-
tion, whose behavior is defined by its provided and required interfaces. An Interface is a specifica-
tion of behavior that implementer components agree to meet. An assembly connector is used in
order to bridge a component's required interface with the provided interface of another compo-
nent. An example case is the requested interface for user’s personalized information by the Out-
put Platform and the provided interface by the Profiler called “Output for Questionnaires”. More
detailed definition of the interfaces per component will follow in section 4.5.

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

£
Avatar €= === == =Ugg= = === === 2
Output Platform
L
Ul CU,‘“E‘L'I
/“E;ﬁeﬂ\
g Usage Metrics {l Performance Metrics ﬂ
Adviser ) Profiler Q) Rewarder
-
o
ks

Performance Measures

Fetch Meta Maodel
Fetch Content Nodes
Feedback Content Modes

£]

Content Provider

4.3 LOGICAL VIEW

The logical view defines the functionalities that the SUCCESS platform should perform and provide
to the users in order to ensure that all of the desired functionalities, which derived from the Use
Cases, are captured by the system. Based upon this approach, a description of the functionalities
that each component provides, is specified and is followed by a level 1 class diagram which depicts
each specification through class entities, important methods and the relationships among objects.

4.3.1 OUTPUT PLATFORM

The Output Platform represents the main user frontend with which the users interact directly with
the system. The main purpose of the Output Platform is the rendering of the user interface that
will allow the user to interact with the system and use the services provided by SUCCESS. Figure 5
presents a simplified logical view class diagram of the output platform implementation.

Specifically, as depicted in the figure shown below, the majority of the Output Platform classes
extent the AdvisorActivity Java Class. This class allows the Output platform classes to perform
callbacks to the other components according to user requests and render the results. The App java
class implements methods that are utilized from the Output Platform java classes.

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

<<Java Class>>

i <<Java Class>> <<Java Class>>
©ContentActivityWeb @AdvisorActivity T e T
SF] LR A main.java.cyac.ucy main java.cy.ac.ucy
EXTRA_CONTENT: St
YEXTRA_RESOURCE nsm log: Logger “log: Logger
EXTRA_RESOURUE: string - -
= backBtn: ImageButton a°AdvisorActivity() = profilePic: ImageView
= playBtn: ImageButton @ presentNode(Node):void e prqﬁ\eProc. ProgressBar
Stts TextToSpeech © advisorReady():void = articleProc: TextView
= webView WebView .| “updateProgress(int intintintintintintintintintintintintinf):void °‘wdteoPFr>oc T?X\\Ie_w
o - PupdateProgress1(String).void = lectureProc: lextview
a ig{glgﬁt:;kmammﬂon Button 2 g S} AT = roleplayProc: TextView

o articleBar: ProgressBar

ézlrzﬂ;r?éj)gr;ﬁremes SharedPreferences o videoBar ProgressBar
size eX >1ing = lectureBar: ProgressBar
sccr?ge“{“(cgw?bod g “.._| = roleplayBar: ProgressBar
CELAUGAH e)vol *{ = quickinfo: ImageView
aintTTS():void <<JagAC\ass>> o gopl,pMenu. ggpl_pMem
@ onBackPressed():void ~ @App = quickhfoText: TextView
< onDestroy()-void = main.java.cy.ac.ucy = gHelper: GoogleHelper
& stopAndShutdownTTS () void °sw  sharedpreferences: SharedPreferences
o onPause():void Feontext: Context 4 editor: Editor
< UpdateProgress(int int,int,inkint,int int,intint,int int int,int int)-void | 4., FexistinGoogle Drive: boolean < preferenceHelper PreferenceHelper
< updateProgress1(String) void "/ ¥ TAG String = rootListView: ListView
o presentNavigation{Navigation)-void = defauitLocale: Locale = myList Arraylist<menuitem:
o presentContert(Contert):void 4+ sp: SharedPreferences asimpleList: ListView
o notifyFullUpdate()void FApR() = PHOTO_REQUEST int
e onCreate().void SMISS_YOU_ID:int
i h FgetAppBaseContext():.Context |2..—{ © mDialog: ProgressDialog
<<Java Class>> @ onSharedPreference Changed(SharedPreferences String):void & NavigationActivity()
®ContentListActivity racking(String Corte) void « onCreate(Bundie} void
main java.cy.ac ucy exLogging(String Cortext) void @ onDestroy()-void
7log. Logger @ sendTracking(Context)-void & onClick(View) void
= adapter ContentAdapter ;serﬁexLogg\r‘g(Corie)d) pod © advisorReady():void
= articleBir: Button clearTracking(Conlex)-void = checkPermissions(boolean)void
e videoBir. Buiton &clearexLogging(Context)void = openDiary()void
= lectureBtn: Button z:t;_ngﬂ\meZRead String) Stri = changeProfilePicture() void
= roleplayBtn: Button 7 esl;(_ug\meZRead int):Stri = setProfilePicture():void
- editText: EdifText o eoriWords(Stmng)irt © onActivityResult(int int Intent):void
- articletFitter Boolean FereateFilehiemalStorage(String String).void #scaleDown(Bitmap floatboclean) Bitmay
< videoFilter: Boolean FileExistiternalStorage(String boolean  onResume().void
« lectureFifter Bookean @'readFileFrominternalStorage(String):String _ o onBackPressed():void
= roleplayFilter Boolean &createFileCloudStorage(DriveResource Client String String) void o presentNavigation(Navigation) void
= backBn ImageBuiton &queryGoogle Drive(DriveResourceClient, String)void o presentContent(Contert) void
= local_cortent: List=<Content> &setFileExistGoogle Drive(boolean) void o notifyFulUpdate()void
. mnSEeak Buiton jgetFHeE)asteoogleDnve boolean = setNavBarTitle(String) void
FREQ CODE SPEECH INPUT int checkFilterContent(String, String) boolean © updateProgress(int int intint int,int,int int int int int int int int)-void

< updateProgress1(String) void

< ContentListActivity()
i @ setReminder():void
< onCreate(Bundle):void
= promptSpeechinput()-void = createNotification():Notification

< onActivityResult(int int Intent)-void

@ presentNavigation(Navigation) void

@ filterArticles()-void

@ filterArticlesOnKeypress(String)-void

@ checkArticleOnfilter(Content String)-boclean

o presentContent(Content):void

o notifyFullUpdate().void

< updateProgress1(String):void

< updateProgress(int,int,int,int,int,int,int,int,int,int,int,int,int,int):void

4.3.2 PROFILER

The Profiler component is one of the three components realising the dialogue management in the
SUCCESS solution.

The main purpose of the Profiler is to administer data about the user in a user model. The Profiler
does this through continuously recording of data during system usage, as well as through initiating
active inquiry.

The main tasks are:
e Acquisition of user-relevant data, through: active inquiry, usage patterns, Adviser input etc.
e Administering the internal user model

e Realizing a Questionnaire like dialogue model to produce the initial user model/profile, and
managing subsequent updates to it.

The Profiler is implemented as Android service (see Figure 6), so that it starts and runs in the
background when the SUCCESS App is started and running.

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

<=lava Clagz=>

(® Profiler Service
at.ac.ait. hbs. success dislogue. manager. android. librany

GCF‘r-:I filerServicel)

@ onCreate():void

@ onDestroy( ) void

@ onBind(intent):[Binder

#profiler / 1

=<lava Class>=

(= Profiler

at.ac.ait. hbs. success. dislogue. manager. android. librany. profiler

-GCF‘rn:I filer{Context, ProfilerDatabase, String)
@ =etlser(String ) void

@ presentNavigation{Navigation ) void
@ presentContent{Content).void

@ getBinaryResource(Content): void

@ =etBookmark{Content):void

@ removeBookmark{Content ) void

@ enrichContent{RepositoryModel) void
@ getNewDialogueMumber{String yint
@ presentTurniint, Turn}:woid

@ storeResult{int, Turn, Object)void

@ getResult(int, String):Object

@ getResultTypelint, String): TurnType
@ dialogueFinizhed(int):void

@ resetContentProgress() void
@ getPreviousDiaryMumber(String):integer

@ getPreviousDiaryTimestamp(String):Long

@ getContentProgress( ) Livelata<Map<ContentType, Integer=>

%N'I
<<lava Clags=>

(# Profiler ServiceBinder
at.ac.ait.hbs. success dislogue. manager. android. librany

GCF'ru filerServiceBinder()

@ getService().ProfierService
@ getProfiler()y:Profiler

@ exportDB(}void

The ProfilerService is extended by the DialogueService, which in turn is extended by the Advi-

sorService, as depicted in Figure 7.

Public

SUCHFSS

14



D4.1 Functional specification and integrated architecture report

=<<Java Clazs>=

(# ProfilerService
at.ac.ait. hbs . success. dislogue. manager. android. librany

GC ProfilerService()

@ onCreate(}:void

@ onDestroy(}void

@ onBind(Intent):Binder

1

«<<Java Clagg=>
& DialogueService

at.ac.ait.hbs. success dislogue. manager. android. librany

él}ialugu eService()

<=lava Clagz==

(® AdvisorService
at.ac.ait. hbs. success dislogue. manager. android. librany

% SHARED_PREF_CURRENT_LANGUAGE: String

GCAEI visorservice()

@ getService( ) AdvisorService

@ addAdvisorCallbackiladvisorCallback) void
@ removeldvisorCallback(lédvisorCallback):void
@ changelocale(Locale):boolean

@ getFiteredContent():List=Content=

@ isNodeSelected( ) boolean

@ getCurrentMode):Node

@ =electRootNode():Node

@ selectPreviousNode():Node

@ selectMNode(String):.Node

@ getBinaryResource(Content):bvte]]

@ getBinaryResource(String):byte]

@ getCount(}Map=ContentType, Integer>

@ gefTotalCount(}int

@ getRepositoryModel():RepositoryModel

@ onCreate():void

@ onDestrov( ) void

@ onBind(Intent):[Binder

@ presentNavigation(Mavigation ) void

@ presentContent{Content):void

@ notifyFull)pdate( ). void

@ onSharedPreferenceChanged(SharedPreferences, String)void

Access to the profiler for other components is provided through the getProfiler() method which is

exposed by the ProfilerServiceBinder class (shown in Figure 6) and ultimately accessible through

the AdvisorService.

Public

SUCHFSS

15



D4.1 Functional specification and integrated architecture report

The Profiler class implements an interface that defines various methods for other components to

interact with the profiler, as shown in Figure 8.

<<Java Interfaces>
8 |advisorProfiler

at.ac. ait.hbs. success. dislegue. manager. api. advisor

<<lava Interface==
¥ IDialogueProfiler

at.ac.ait. hbs. success dislogue. manager. api. dislogus

@ presentMavigation{Navigation}:void
@ presentContent{Content)void

@ getBinaryResource(Content) void

@ setBookmark(Content).void

@ removeBookmark(Content):void

@ enrichContent{RepositoryModel)void

@ getMewDialogueNumber(String):int

@ presentTurn(int, Turn}void

@ storeResult(int, Turn, Object) void

@ getResuliTypelint, String ) TurnType

@ getResult(int, String ). Object

@ dialogueFinished(int):void

@ getPreviousDiaryNumber(String):integer

<<lava Interface==
€% IProfiler

at.ac.ait.hbs. success. dislogue. manager. android. librany. profiler

@ getContentProgress(yLivelata=Map<ContentType, Integer>=
@ resetContentProgress():void

@ getPreviousDiaryTimestamp(String):Long

<<Java Clagss=>

(& Profiler

at.ac.ait.hbs. success dislogue. manager. android. librany. profiler

GCF‘rl:l filer{Context,ProfierDatabase, String)
@ setUser(Stringjvoid

@ presentMavigation{Mavigation}:void

@ presentContent{Content):void

@ getBinaryResource(Content).void

@ setBookmark(Content)void

@ removeBookmark(Content):void

@ enrichContent(RepositoryModel) void

@ getewDialogueMumber(String)cint

@ presentTurn(int, Turn}.void

@ storeResult(int, Turn, Object).void

@ getResult(int, String): Object

@ getResuliType(int, String ) TurnType

@ dialogueFinished(int}void

@ getContentProgress().LiveData=Map=ContentType, Integer==
@ resetContentProgress():void

@ getPreviousDiaryNumber(String)integer

@ getPreviousDiaryTimestamp(String):.Long

Public

SUCHFSS

16



D4.1 Functional specification and integrated architecture report

The Profiler keeps track of the user interaction by using an SQLite database (using Androids Room

Persistence Library [2]), shown in Figure 9.

==Java Class»=

(= Profiler Service
at.aG.ait. hbs . success. dislogue. manager. android. librany

=<lava Class>=
(3 ProfilerDatabase

at.ac.ait.hbs. success dislogue. manager. android. librany. profiler. databass

GC ProfilerService()

@ onCreate():void

@ onDestroy(}void

@ onBind(Intent):Binder

#profilery, 0.1

GCF'ru filerDatabasel)

d‘contentﬂeo{} PrezentContentDao
d‘naw’geﬁmﬂaoﬂ PresentMavigationDao
dbmewﬁesnumeﬂeoﬂ BinaryRezourceDao
J‘content&nnkmerﬂrﬂeo{} ‘ContentBookmarkDao
d‘ﬂfefﬂgue&essfonﬂenﬂ :DizlogueSessionDao
d‘pr&sent?’umﬂeoﬂ -PreseniTumnDao
dﬂr’a.‘ngueﬁesu.‘tﬂan{,l :DislogueResultDao

/o

==lava Clags=>

(= Profiler

at.ac.ait.hbs. success dislogue. manager. android. librany. profiler

@ =setUser(String)woid

@ presentMavigation{Mavigation};void
@ presentContent{Content):void

@ getBinaryResource(Content)void
@ =etBookmark(Content) void

@ removeBookmark(Content)void

@ enrichContent{RepositoryModel) void
@ getNewDialogueMNumber(String):int
@ presentTurnfint, Turn}:void

@ storeResult{int, Turn, Object).void

@ getResult{int, String):Object

@ getResuliTypelint, String): TurnType
@ dialogueFinished(int):void

@ resetContentProgress( ) void

ec ProfileriContext, Profierlatabase, String)

@ getContentProgress().Livelata=Map<ContentType, Integer==

@ getPreviousDiaryNumber(String):integer
@ getPreviousDiaryTimestamp(String):Long

The ProfilerDatabase uses various interfaces to interact with the underlying database, as shown in

Figure 10.

Public

SUCHFSS

17



D4.1 Functional specification and integrated architecture report

=zJava Interface=»>
&9 PresentContentDao
0 ;Java;terface»ba at.a0.3it hbs. subpess. dislogue. manager. android library. profiler. dstabase. advisor <lava Interface>
ina esourcellag
) Y ) ) ) @ getCategoryProgress(String): LiveData<List<PresentContentTyp... 3 ContentBookmarkDao
at.ac. sit. hibs. success.dislgue. manager. android. library. profiler. database. advisor . . o " .
© insert{PresentContent)void t.ac. ait.hbs. success. dislogue. manager. android library. profiler. database. advisor
@ getE‘.ateguryPrugress(.Strlng}:.Lnstd?resentturltentTypePrugresp @ resetProgress(String):void © petContentBookmarks(String):List<ContentBookmarks
O e i e S EEATE T [ @ getContentBookmarksLive(String) LiveData<List<ContentBookm...
@ getCDntentPrngress[?trlng}..Llst<B.|naryR35|.Jurce.> e ® insert{ContentBookmark):void
@ getContentProgressLive(String):LiveData<List<BinaryResource>> @Pmﬁjerﬂambase © delete(String, String):void
@ insert(BinaryResource)void PN
{ ¥ ! [%==..._| at.ac.ait. hbs success. dislogue. manager. android library. profiler database .. @ resetBookmarks(String):void
@ resetProgress(String)void -
d"'PruﬁIerDatabase(}
d“wnt&nf[?&o(,l ‘PresentContentDao ~=lavalnterface=>
o navigat c ; 3 PresentTurnDao
<<lavaInterface>> navigationDao():FresenthzvigstionDao 2 st acat hibs. sucoess. dislogue. manager. android. library. profiler. database dislogus
3 Dialogue SessionDao B &' binaryRescurceDaoy) -BinaryResourceDao
at.50.5it hbe. success dislogue mansgar android fbrary.profier. dstabass dislogue € & contentBookmerkDao):ContentBookmarkDao @ insert(PresentTurn):void
@ insert{DialogueSession)long d“d'. o S ionDao()-Dialo = fanDac Tt
@ setFinished(int,long):void ipresentTumDao(,l.'PresentTumDao <=<Java Interface==>
@ getPreviousDiaryNumber(String, String):Integer drafogueﬁesufr[?ao().Draioglueﬂesuir[)ao 3 PresentNavigationDao
& getPreviousDiaryTimestamp(String String)-Lang v at.ac.ait b success. dislogus. manager. android library. profiler. datsbase advisor
=<]ava Interfaces== @ insert{PresentMavigation):void
3 DialogueResultDao

at.ac st hbs.sucosss. dislogue. manager. android library. profiler datsbase dislogue

@ insert(DialogueResult)long
@ getResult{int, String):DialogueResult

4.3.3 REWARDER

The rewarder component is one of the three component of the three components of the dialogue
management in the SUCCESS solution.

The main purpose of the rewarder component is to choose or generate feedback to the user. It
does so by choosing appropriate feedback for performance measures from the system (i.e. derived
from Profiler data). The rewarder utilises adequate and meaningful content to increase motivation
and engagement with the trainings. In general, the Rewarder needs to measure performance indi-
cators and based on these generate feedback to the user.

The rewarded has not been implemented yet and will be available after the next iteration of the
development process.

4.3.4 ADVISER

The adviser component is one of the three components realising the dialogue management in the
SUCCESS solution.

The main purpose of the advisor is to produce an advising entity that generates a dialogue like
interaction from content nodes that contain dialogue models and the structure of the Meta mod-

el. The dialogue like interaction is expressed textually and visually and audibly supported by the
avatar component.

The main tasks are:

e Converting Meta Model based data structures for content navigation, into a model for
dialogue like interaction.

e Interpretation of Avatar content (dialogue models) at run time taking some context in-
formation into account; generating real time interaction instructions for the Output
platform’s avatar component.

e Acquisition of interaction data, for profiling including usage and performance metrics

Public
SUCHESS ,



D4.1 Functional specification and integrated architecture report

The Adviser is implemented in Java and wrapper in an Android service (see Figure 11), so that it

starts and runs in the background when the SUCCESS App is started and running.

<=]ava Clagss=
(2 AdvisorService

at.ac.ait.hbs. success disleguee. mansger. android. librany

%f SHARED_PREF_CURRENT_LANGUAGE: String

GCAd'.fisurﬁer'.fic:e(}

@ onCreate():void

@ onDestroy():void

@ onBind(Intent): Binder

@ presentMavigation{Mavigation}:void
@ presentContent{Content):void

@ notifyFulllpdate():void

<< Java Clags»>
(& AdvisorFactory

at.zc.ait. hbs. success dislogue. mansger.impl. sdvisar

@ onSharedPreferenceChanged(SharedPreferences, String):void
==]ava Clagg=>

_mainder\nj,?\
[
(® AdvisorServiceBinder

at.ac.3it. hbs. seccess. dislogue. mansger. android library

es getadvisor(File). AdvisorFile
esgetAd visor(File,ladvisorCallback). AdvisorFile
es getadvisor(inputStream) AdvisorFile

esgetAd visor(inputStream ladvisorCallback) AdvisorFile

esgetAd visor(Reader).AdvisorReader

esgetAd visor(Reader |AdvisorCallback) AdviscrReader
esgetAd visor(ladvisorCallback). AdvisorContentProvider
esgetAd visor(Locale, ladvisorCalloack).AdviserContentProvider
es getAdvisor(File ladvisorProfiler): AdvisorFile

es getAdvisor(File ladvisorCalback lAdvisorProfiler): AdvisorFile
es getAdvisor(inputStream, lAdvisorProfiler) AdvisorFile

esget-f«d visor{inputStream ladvisorCallback ladvisorProfiler . AdvisorFile

esget-f«d visor(Reader, |AdvisorProfiler). AdvisorReader
esget-f«d visor(Reader |AdvisorCallback, lAadvisorProfiler) AdvisorReader
esget-f«d visor(ladvisorCallback, advisorProfiler). AdvisorContentProvider

esget-f«d visor(Locale ladvisorCalloack, ladvisorProfiler): AdvisorContentProvider

ecAdvisurﬁewic&Bind&r(}

@ getService() AdvisorService

@ addAdvisorCallback(lAdvisorCallback):void
@ removeidvisorCalback(lAdvisorCallback) void
@ changelocale(Locale).boolean

@ getFiteredContent().List=Content=

@ isModeSelected().boolean

@ getCurrentiode():Node

@ selectRootNode():Node

@ selectPreviousMNode():Node

@ selectNode(String):Node

@ getBinaryResource(Content):bytel]

@ getBinaryResource(String): byte]]

@ getCount()Map<ConteniType, Integer=

@ getTotalCount():int

@ getRepositoryModel():RepositoryModel

The Android library of the dialogue manager comes with a ServiceUtil utility class which provides a

number of utility methods. One of them is a convenience method initAdvisorService(Context) for

initializing the AdvisorService, shown in Figure 12.

Public

SUCHFSS

19



D4.1 Functional specification and integrated architecture report

Depending on how input is provided for the Adviser by the system, the AdvisorFactory class gets

<<lava Clags=>
(# ServiceUtil

at.ac.ait.hbs. success dislogue. mansger. android. librany. util

%f DEFAULT_ENCODING: String

& ServiceUtil(y

eusisNuIID rEmpty(String ). boclean

Gs maskString(String, String ). String

e-sget.f«ppN ame(Context): String

eusget‘-.-f&rsiunN ame({Context): String
eusg&t‘-.-f&rsiunl:‘.ude([‘.u ntext).3tring

ngetFirstIn stallTime(Context).Date

eusgetLa stllpdateTime(Context):Date

eusget-f«ppN ameFromPackageMame(Context, String): String

GSiSAI:I visorserviceRunning(Context).boolean
Gsin itadvisorservice[Context) void
e-sdebuglntent(lntent.ﬁtring}:'.fuid

e.usg&tLu caleForLanguage(Stringy:Locale

i

==lava Clags=>
(2 AdvisorService

at.ac.ait. hbs. success dislogue. manager. android. librany

% SHARED PREF_CURRENT_LANGUAGE: String

& Adviso rService()

@ onCreate(}.void

@ onDestrov( ) void

@ onBind(Intent):IBinder

@ presentMavigation{Navigation}:void

@ presentContent{Content)void

@ notifyFulllpdate( ). void

@ onSharedPreferenceChanged(SharedPreferences, String)void

and returns the appropriate Advisor instance, shown in Figure 13. In SUCCESS, the ContentProvider
provides the data for the Advisor.

Public

SUCHFSS

20



D4.1 Functional specification and integrated architecture report

==lava Class==
(= AdvisorService

at.zc.ait. hbs.sucoess. dislogue. mansger. android. librany

S::J'—SHJ:-\REI:)_F‘REF_L".LIRP.E NT_LANGUAGE: String

ecAd visorService()
@ onCreate():void

onDestroy()-void

@ onBind(Intent):IBinder

@ presentMavigation(Mavigation):veid

@ presentContent(Content):void

@ notifyFullupdate().void

@ onSharedPreferenceChanged(SharedPreferences, String):void

==Java Clazss=
(9 AdvisorFile

at.ac. ait. hbs . success dislogue. manager.impl.ad visor

W

<<Java Class»»

(= AdvisorFactory

at.ac.ait. hbs. success dislogee. mansger. impl. advisor

ucAdvisurFile(File, lAdvisorProfiler)

ucAd'.fisurFile[File. lAdvisorCallback, ladvisorProfiler)

QcAdvisurFiIe[InputStream. & dvisorProfiler)

ucﬁ.dvisurFiIe(InputStream, & dvisorCallback, ladvisorProfiler)

."JTF

S

esg&t,ﬁdvisur[File}:Advisu rFile
esg&tﬁv.dvisur(FiI&, ladvisorCallback ) AdvisorFile

GSg&tAI:Ivisclr[lnputStream}:AdvisurFile

e‘sgetAdvisur(lnputStream. l&dvisorCallback). AdvisorFile

nget,fxd'.fisurljﬂea der).AdvisorReader

esgetﬁdvisurfﬂea der,ladvisorCallback). AdvisorReader
esg&tﬁ-.dvisur(lﬁu:lvisurtallback}:ﬁadvisu rContentProvider
esg&tﬁxdvisur[Lu cale ladviserCallback) AdvisorContentProvider
esgetﬁv.dvisur(File, lAdvisorProfiler): AdvisorFile
ng&tﬁxdvisur[FiI&. |AdvisorCallback lAdvisorProfiler ). AdvisorFile
e‘sgetAdvisur[InputStream. & dvisorProfier): AdvisorFile

esg&mdvisurtlnputstream, & dvisorCallback, ladvisorProfiler ) AdvisorFile
ng&tﬁkd'-'istlr[ﬂ&ﬂ der,ladvisorProfiler). AdvisorReader
esg&mdvisur(ﬂf.lﬂ der, ladvisorCallback ladvisorProfiler). AdvisorReader
GSg&tAdvisur[lﬁxdvisurtﬂllbﬂck. A&dvisorProfiler). AdvisorContentProvider

=<Java Clazs==»
(9 AdvisorReader

at.zc.ait. hbs.success dizlogue. manager.impl. advisor

ucAdvisurF‘.ea der{Reader, ladvisorProfiler)

UcAdviscer.ea der(Reader lAdvisorCallback, ladvisorProfiler)

’

==Java Clags=>
(=% Advisor

at.zc.ait.hbs.success dizlogue. manager.impl. advisor

e‘sgetAdvisur[Lu cale, ladvisorCallback, |AdvisorProfiler) AdvisorContentProvider

- D-':.1
-advisor \L.‘
L4

==Java Class>=

(& AdvisorContentProvider

at.3c. ait. hbs . success dislogue. manager.impl.ad visor

chdvisurCuntentPrUvider(lﬁadvisurPruﬂler}
gcAdvisu:lrL".u:lntentPrUvider(LucaIe.LﬁdvisurPruﬂler}
UCAEI\.fisurCuntentPruvider(lﬁadvisur[‘.ﬂIIbﬂck,LC\dvisurPruﬂI&r}
chd\.fisurL".untentPrU\.fider(LucaIe.lAdvisurE‘.aIIback.fodvisurPrclﬂler}
@ changelocale(Locale) boolean

@ relnttialize():boolean

@ getBinaryResource(Content): byte(]

@ getBinaryResource(String):byte[]

<Fadviser()
Uc):kd'-‘iSUr[l-':kd'-fiSUrC-ﬂ||bﬂCk}
R_)c):kdViSUrEdeiSUFPFUﬂ'EI’}
UcAdvisur[lﬁadvisurtallbﬂck.LAdvisurPruﬂler}
» getCallback():ladvisorCallback

< setCallbackiladvisorCallkack):void

<» getProfiler() l4dvisorProfiler

@ isRepositoryModelLoaded( ) boolean
@ getRepositoryModel(): RepositoryModel
J—Iu:ladrdudel[Reader}:buulean

& reset(jvoid

@ destroy(}.void

@ isNodeSelected( ) boolean

@ getCurrentNode():Node

@ selectRootMode():Node

@ selectPrevicusNode():Node

@ selectMode(String):Mode

@ getBinaryResource{Content): byte[]

@ getBinaryResource(String ). byte]]

@ getCount{}:Map=ConteniType, Integer=
@ getTotalCount():int

As mentioned before, when using the dialogue manager in Android, the AdvisorService must be
initialized once when the app starts through the ServiceUtil convencience method initAdvisorServ-
ice(Context). When the AdvisorService is running, any class that needs the Advisor can simply ex-
tend the helper class AdvisorActivity which in turn extends the abstract class AbstractServiceActivi-

Public

SUCHFSS

21



D4.1 Functional specification and integrated architecture report

ty. AbstractServiceActivity automatically binds to the AdvisorService and provides access to the
AdvisorService through the member variable advisorService. Figure 14 shows this relationship.

<<lava Clazs>= =<=lava Clags=>
@Absrracrﬁerviceﬂcﬁviry (2 AdvisorService
Cy.30.UCy at.3c.ait. hbs sucoess dislogus. manager. android. librany

a5 Abstra ctServiceActivity() %FsHaRE [_PREF_CURRENT_LANGUAGE: String

< onCreate(Bundle):void ecAdvisurﬁewi:e(}

@ onPause()void @ onCreate()void

@ onResume();void @ onDestroy()void

@ isAdvisorServiceBound(). boolean @ onBind(Intent): [Binder

@ advisorReady():void @ presentMavigation(Navigation):veid

@ presentNavigation{Navigation):woid @ presentContent{Content)void

@ presentContent{Content):void @ notifyFulll pdate():void

@ notifyFulllpdate():void @ onSharedPreferenceChanged(SharedPreferences, String):woid

f -mBinder\(ﬂ_jT
#advisorseryi
==Java Class== ==Java Class=»
(3% AdvisorActivity 0.1 (2 AdvisorServiceBinder
CY.30. Uy &t.3¢.8it.hbs. success. dislogue. mansger. android . library

& Advisoracivity() & AdvisorServiceBinder()
@ presentMode(Node ). void @ getService(). AdvisorService
@ advisorReady().void @ addAdviserCallback(lAdvisorCalback).void
{}qupdeteFrogress{fnt,fr.lt,mt,fnt,fnt,mt,mt,.‘nr,mt,mr,r'nr,r'nt,mt,mt,l.'mfc:' @ removeAdvisorCalback(lédvisorCallback)void
(:5"“updeteFrogressf(Strr'ng,l.'uofn @ changelocale(Locale):boolean

@ getFiteredContent(): List=Content=

@ isNodeSelected(): boolean

@ getCurrentNode():Node

@ selectRootNode():Node

@ selectPreviousNode()Node

@ selectNode(String):Node

@ getBinaryResource(Content):byte[]

@ getBinaryResource(String): byte(]

@ getCount():Map=ContentType Integer>
@ getTotalCount(}int

@ getRepositoryModel(): RepositoryModel

Figure 15 shows the methods available through the AdvisorService, which are implemented in in-
ner classes of the parent classes AdvisorService, DialogueService and ProfilerService, suffixed by
the word Binder, from which the AdvisorServiceBinder implements additional methods from the
IAdvisor interface.

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

<<Java Clags»>
(® AdvisorService

at.zc.ait.hbs success dislogue manager. android librany

<<=Java Clagss=

(3 AdvisorServiceBinder
at.ac.ait. hbs. success. dislegus. mansger. android. librany

%f SHARED_PREF_CURRENT_LANGUAGE: String

{?Advisurﬁewice(}

@ onCreate():void

@ onDestroy():void

@ onBind(Intent):[Binder

@ presentMavigation{Navigation}:void -m
@ presentContent{Content):void

@ notifyFulllpdate()-void

@ onSharedPreferenceChanged(SharedPreferences, string).void

Binder

0.1

{fAd'.fisurSer'.fic:eEinder(}

@ getService():AdvisorService

@ addAdvisorCallback{ladvisorCallback): void
@ removeAdvisorCallback(ladvisorCallback):void
@ changelLocale(Locale).boolean

@ getFiteredContent().List«Content=

@ isModeSelected():boolean

@ getCurrentMode():Node

@ selectRootNode():Node

@ selectPreviousMode():Node

@ =selectNode(String):Node

@ getBinaryResource(Content): byte[]

@ getBinaryResource(String ) byte]]

@ getCount():Map=ContentType, Integer=

@ getTotalCount(}:int

@ getHepositoryModel)RepostoryModel

v

<<Java Interface==
&9 lAdvisor

at.ac.ait.hbs. success dislogus. mansger. spl.advisor

@ isNodeSelected():boolean

@ getCurrentNode():Node

@ selectRootNode():Node

@ selectPreviousMode() Node

@ selectMNode(String):Node

@ getBinaryResource(Content): byte]]

@ getBinaryResource(String): byte[]

@ getCount(}:Map=ContentType, Integer=
@ getTotalCount(}:int

@ getRepositoryModel ) RepositoryModel

<<Java Clags»>
(& DialogueService

at.ac.ait. hbs. success. dislogue. manager. android library

at.ac.ait.h

<<Java Clags»>

(# Dialogue ServiceBinder
b=, success. dislgus. manager. android. librany

{fDiaIugueSer'.fice(}

{}CDialugueﬂewiceBinder(}

@ loadDialegue(String, File, IDialogueCallback boolean): IDialegue

@ loadDialogue(String, InputStream, IDialogueCallback boolean ) IDialogue
@ InadDialogue(String, Reader, IDialogueCallback boclean): IDialogue

<<lava Class»=
(3 ProfilerService

at.sc.ait.hbs. success dislogue. manager. android. library

< profiler: Profiler

-mBinder

g

<< lava Clagss=

(3 Profiler ServiceBinder
at.ac.3it.hbs. success dislogue. manager. android. librany

{fF‘ruﬁIerSer'.fice(}

@ onCreate():void

@ onDestroy():void

@ onBind(Intent):[Binder

. .

{fPruﬁIerSEWiceBinder(}

@ getService():ProfilerService
@ getProfiler(}:IProfier

@ exportDB():void

Public

SUCHFSS

23



D4.1 Functional specification and integrated architecture report

The class extending the AdvisorActivity class must implement various callbacks and two abstract
methods so that the Adviser is able to push information to the extending class. Those callback
methods are defined in the /AdvisorCallback and ContentChangeHandler Interfaces as well as in
the AdvisorActivity class, shown in Figure 16.

<<Java Clags>>
(& AdvisorActivity
Cy.30. ey

a° AdvisorActivity()

@ presentNode(Node)void

@ advisorReady( ) void

oﬁ'upuetergress{.‘nt,.‘nt,.‘nt, intint int int int int int,int int, int, int)-void
Gﬁ'updatergress?{Stn‘ng,l void

{::].------

<<Java Interfaces>=
9 ladvisorCallback

at.ac.ait. hbs success. dislogue. manager. android. librany

@ advisorReady(}void

=<Java Interfaces=
9 ladvisorCallback

at.ac.ait. hbs. success dislogue. manager. api. advisor

@ presentMavigation{Mavigation}:void
@ presentContent{Content)void

!

<<Java Interfaces=
¥ ContentChangeHandler

at.exthex sucoess

@ notifyFulll pdate():void

The following list provides an overview about each callback method:

e advisorReady():
This method is called when the Adviser was successfully instantiated and the AdvisorServ-
ice is ready.

e presentNavigation(Navigation):
This method is called when a navigation node is selected.

e presentContent(Content):
This method is called when a content node is selected.

Public
SUCHESS 5y



D4.1 Functional specification and integrated architecture report

e notifyFullUpdate():
This method is called when the content provider published a content update or when the
content provider’s content tree is reloaded.

e updateProgress(...):
This method is called when the users content progress is updated.

Whenever the Adviser requests the navigation tree and content nodes from the content provider,
the model structure is validated (i.e. if all node ids and references exist) using the validateModel()
of the RepositoryModel class, as shown in Figure 17.

<<Java Clagss=>
(2 RepositoryModel

&t.3C. 3t hbs. success dislogue. manager. spi. advisor

==Java Class==
&4 Advisor

at.ac.ait.hbs.spccess. disleguee. manager.impl.ad visor

GCRepusituryMUdeI(}
ec RepositoryModel(List<Navigation= List<Content=)
@ getNodes().List=Navigation=

<Fadviser()

OCAdvisur(lAdvisurCallback}

<F Advisor{ladvisarProfier)
ocAdvisur(l,'!\d\.fisclr[:aIIback,LC\dvisurPruﬁler}
<» getCallback(): l&dviscrCallback

<» setCallback(ladvizorCallzack) void

< getProfiler{}:AdvisorProfiler -repositeryModel
@ izRepositoryModellcaded():boolean 0.1

@ setNodes(List=Navigation=)void
@ getContentz()List=Content=

@ s=etContentz(List<Content=):void
@ hazhCode():int

@ eguals(Object)boolean

@ toString():String

@ validateModel():boclean

@ getDuplicateNodelDs(): Set<String=
@ gethissingNodelDs():Set<String=

@ getRepositoryModel): RepositoryModel
OF|EIﬂdMEIEI&l(REEdEI’}ZbUUlEEI‘I

< reset(yvoid

@ destroy():void

@ izNodeSelected(): boolean

@ getCurrentNode()Node

@ selectRootNode( ) Node

@ selectPreviousMode():Nede

@ getNodesByType(MavigationType):List=Navigation=
@ getNodeByReference(String):Mavigation
@ getContentByReference(String):Cantent

@ selectNode(String):Mode =<]ava Classs==
@ getBinaryResource(Content) byte[] (9 AdvisorContentProvider
@ getBinaryResource(String): byte[] st.3c.ait hbs susoess dislogue manager impl.adviser

@ getCount()Map=ConteniType Integer=

) OcAdvisu rContentProvider(ladvizorProfiler)
@ gefTotalCount()int

OcAdvisu rContentProvider(Locale ladvisorProfiler)
ocﬁxdvlsu rContentProvider{lAdvizsorCallback lAdvizsorProfiler)

=<lava Interface==

€ ContentProvider -cofteftREdgContentProvider(Locale, ladvisorCallback, lAdvisorProfiler)
at.exthes success -E'E"'{ @ changelocale(Locale) boolean

@ reinitialize() boolean
@ getBinaryResource(Content): byte]]
@ getBinaryRezource(String): byte])

@ setUpContentProvider(Locale, ContentChangeHandler):void
@ getConteniTree():byte]
@ getBinaryRezource(String): byte])

W,

<<Java Clagg>>
(@ staticContentProvider

st.exthex.success

4 logger: Logger
4 |ocale: Locale
4 contentRepUrl: String

ecstﬂtic:[‘.u ntentProvider(}

@ getFullConteniTree ) byte]]

@ setFullContentTree(bytel]): void

@ getlocalel):Locale

@ setllpContentProvider(Locale ContentChangeHandler):void
@ getContentTree():byte]]

@ getBinaryRezource(String):bytel]

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

Contents of type Lecture, Diary and Roleplay are presented as interactive turn-based sessions,
where the user must provide an answer at every turn in order to get to the next turn. This user
dialogue interaction is implemented in a dedicated dialogue Java package. A Dialogue instance is
loaded through the loadDialogue method of the DialogueServiceBinder inner class of the Dia-
logueService class. The loadDialogue method is available through the AdvisorService, shown in
Figure 18.

<<Java Clags»>
(9 Dialogue ServiceBinder

at.ac.ait. hbs. success dislogus. manager. android. librany

==]ava Class==
(*} DialogueService
d:Diﬂ logueServiceBinder(} at.zc.ait. hbs. success dislguee. manager. android. librany

@ loadDialogue(String, File IDialogueCalback, boolean): Dialogue &Diﬂlugueﬁewice(}

@ loadDialogue(String, Inputtream, IDialogueCalleack, boolean ) Dialogue
@ loadDialogue(String, Reader, IDialogueCalback, boolean): Dialogue t}
==Java Class==
ﬁl (9 AdvisorService
==]ava Class== at.3¢.ait. hbs success dislogue. mansger. sndroid . library
(5 AdvisorServiceBinder %F SHARED_FREF_CURRENT_LANGUAGE: String
at.ac.ait. hbs. success dislogus. manager. android librany
ecAd'.fisurService(}
ecAd'.fisurS»ar'.ficeBinder[} @ onCreate(}void
@ getService().AdvisorService @ onDestroy():void
@ addAdvizorCallback(ladvizorCallback) void @ onBind(Intent):IBinder
@ removefdvisorCalback(ladvizorCallback):void e__,w @ presentNavigation(Mavigation):void
@ changelocale(Localejboclean ___0_1_._/"@ @ presentContent{Content}:void
@ getFiteredContent(}:Lizt=Content= @ notifyFulllpdate(): void
@ isNodeSelected()boolean @ onSharedPreferenceChanged(SharedPreferences, String):void
@ getCurrentode():Node 3

@ selectRoothode():Node

@ selectPreviousMode():Node
@ selectlode(String):Node 0.
@ getBinaryResource(Content):byte[]

#advisorservice

=<lava Clags==
(= AbstractService Activity
Cy.30.UCYy

@ getBinaryResource(String):byte]]

& AbstractServiceActivity()
Z» onCreate(Bundle ) void

@ getCount(y:Map=ContentType Integer=
@ getTotalCount():int

@ getRepostoryModel]): RepositoryModel I TIIERNETD

@ onResume():void
@ isAdvisorServiceBound():boclean

@ advisorReady () void

@ presenthavigation(MNavigation).void
@ presentContent(Content):void

@ notifyFulllpdate().void

The Dialogue is instantiated in a similar fashion as the Advisor instance by using a DialogueFactory
class, which returns, based on the input parameters of the calling class, the appropriate Dialogue
instance, as depicted in Figure 19.

Public
SUCHESS Ny



D4.1 Functional specification and integrated architecture report

<=lava Class=»
(& Dialogue

&t.ac.ait.hbs. success. dislogus. manager.impl dislogus

vcDiaIugue(String.IDiaIuguePruﬂIer.bquean}
< getExpression(String):Expression
vcDiaIugue(String.IDiaIugueCaIlback.IDiaIuguePruﬂIer.bquean}
< getCallback() IDialogueCallback

< setCallback(IDialogueCalleack): veid

< getProfiler(): IDialogueProfiler

@ isModelLoaded():.boolean

@ getModel():DialogueModel

@ getNumber():int
VFIuadmudel(Reader}:buulean

& reset()void

@ destroy()void

@ isTurnSelected():boolean

@ getCurrentTurn{}:Turn

@ selectRootTurn():Turn

@ selectPrevicusTurn{):Turn

@ selectNextTurn{Object):Turn

@ enrich(String):String

@ enrich(List=Answer>)List=Answer=>

Fi

==Java Class==>

(2 DialogueFile <<]ava Class=>
at.50.ait. hbs success. dislegue manager. impl. dislogue GDiangueReader
C. . . . . at.ac.ait.hbs. success dislogue. manager.impl. dizlogus
< DialogueFile{String File, IDialogueProfiler, boolean )
vcDialugueFiIe(String.FiIe.IDiaIUguel.‘.allback.IDiaIUguePruﬁIer.bquean} vcDialugueReader(String.F‘.eader.IDiaIuguePrUﬂIer.bquean}
chiﬂIugueFiIe(String,InputStream,IDiaIuguePruﬂIer,bquean} VCI}ialugueReader(String,Reader,IDiaIugueE‘.ﬁIlback,IDiaIuguePruﬂIer,bquean}
chiaIUgueFiIe(String.InputStream.IDiaIugueCaIlback.IDiaIuguePrUﬂIer.bquean} _?T
= X

==Java Class=>
(2 DialogueFactory

&t.3C.3it. hbs. success. dislogue. manager. impl. dislogus

OSgetDiﬂIugue(String.FiIe.bquean}: DialogueFile

08getDiﬁIugue(String,FiIe,lDialuguetﬂllba ck,boolean):DialogueFile

OSgetDiaIugu&(String.InputStream.buulean}:Diﬂ legueFile

08getDiﬁIclgue(String,InputStream,IDiﬁ legueCallback boolean):DialegueFile

OSgetDiaIugu&(String.Reader.bquean}:Dia logueReader
{)SgetDiaIugue(String,Reader, IDialepgueCallback boolean):DialogueReader

OSgetDiﬂIugue(String.FiIe.IDiaIuguePruﬁIer.buuI&ﬂn}: DialogueFile
03 getDialogue(String, File IDialogueCallback, IDialogueProfiler, boolean j: DialogueFile

OSgetDiaIugue(String.lnputStream.IDia legueProfiler,beolean):DialegueFile
03getDiaIugue(string,lnputstream,l[}ia legueCallback, IDialegueProfiler, boslean ) DialogueFile

OsgetDialugue(String.Reader. DialegueProfiler,beolean):DialegueReader
{)SgetDiaIugue(String,Reader, DialegueCallback, IDialegueProfiler, boolean ) DialogueReader

==Java Class==

( Dialogue ServiceBinder
&t.3C.50. hbs. success dislogus. mansger. android. librany

&Dialugueﬁewiceﬂinder(}

@ loadDialogue(String,File, IDialogueCallback,boolean ) Dialogue

@ IoadDialogue(String, InputStream, IDialogueCallback, boolean):IDialogue
@ loadDialogue(String, Reader, IDialegueCallback, beolean):IDialogue

<<lava Clazss=>
(& DialogueService

at.ac.ait.hbs. success. dislogue. manager.android  library

{fDia logueService()

Public SU :)ESS



D4.1 Functional specification and integrated architecture report

Before the dialogue is processed, the dialogue model is validated (i.e. if all dialogue turn ids and
references exist), similarly to the navigation and content model of the Content Provider through
the Adviser, using a validateModel() method of the DialogueModel class, shown in Figure 20.

=<=lava Clags==

(& DialogueModel

&t.3¢.8it. hbs. success. dislogue. mansger. api.dislogus

o DialogueModel()

@ getTurns().List<Turn=

@ setfTurns(List=Turn=):void

@ getTurnids() Set<String=

@ getTurnByld(String): Turn

@ getStart(): Turn

@ hazhCode():int

@ equals(0bject) boclean

@ toString():String

@ validateModel() boolean

@ getDuplicateModelDs():Set=String=
@ getMissinghodelDs() Set<String=
L
-model | 0.1

==Java Class»=
(5 Dialogue

&t.3¢.50t.hbs success dislogue. mansger. impl. dislogus

ocl}ialugue(String,lDiﬂluguePruﬂler,buulean}
< getExpression(String).Expression
ocl}ialugue(String,Il}iﬂIuguel:allt:-ack,Il}ialugueF‘rUﬂIer,bquean}
< getCallback):IDialogueCallback

< setCallback(iDialogueCallback) void

< getProfiler():IDialogueProfiler

@ izModelLoaded() boolean

@ getModel():Dialogueiodel

@ getNumber(}:int
OFIUadMudel(Reader}:buulean

< reset(yvoid

@ destroy():void

@ ieTurnSelected() boolean

@ getCurrentTurn(}:Turn

@ =selectRoofTurn(}:Turn

@ selectPreviousTurn()Turn

@ selectNexiTurn{Object): Turn

@ enrich(String):String

@ enrich(List=Answer=).List=Answer>

A class or Android activity that needs to present content in a dialogue like form must get an in-
stance of the Dialogue class and must implement the IDialogueCallback interface to receive up-
dates from the Dialogue class. Figure 21 shows the IDialogueCallback interface, while Figure 22
shows the IDialogue interface which provides information on how to interact with the Dialogue
instance.

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

The following list provides an overview of each DialogueCallback method:

<=Jlava Interfaces=
¥ DialogueCallback

at.ac.ait. hbs. success. dislogue. manager. api. dislogus

@ presentTurn{Turn, Object): vioid
@ dialogueFinished():void

presentTurn(Turn, Object):
This method is called by the Dialogue instance with the new Turn information and the an-
swer to the previous Turn.

dialogueFinished():

This method is called by the Dialogue instance when the dialogue is finished.

=<=Java Interface==

&8 IDialogue

&t.3c.ait. hbs. success. dislogue. manager. api. dislogus

@ isTurnSelected():boolean

@ getCurrentTurn(): Turn

@ =electRoofTurn():Turn

@ =electPreviousTurn():Turn
@ =electMextTurn{Object): Turn

z=Java Class==

(4 Dialogue

&t.3c.ait. hbs. success. dislogus. manager. impl. dislogus

O-:: Dialogue(String, IMalegueProfiler, boolean)

<» getExpression(String).Expression

O-:: Dialoguel(String, IDialegueCallback, IDialogueProfiler, boolean

< getCallback():IDialogueCallback

<» setCallback(iDialogueCallback): void
<» getProfiler():IDialogueProfiler

@ isModelLoaded().boclean

@ getModel().DialogueModel

@ getNumber(}int
OFIUﬂdr.1udeI(Reader}:buulean

< reset()void

@ destroy().void

@ isTurnSelected():boolean

@ getCurrentTurn(}:Turn

@ selectRootTurn():Turn

@ selectPreviousTurn():Turn

@ selectMNextTurn(Object): Turn

@ enrich{String}):.String

@ enrich{List=Answer=) List=Answer=

Public

SUCHFSS

29



D4.1 Functional specification and integrated architecture report

The following list provides an overview about each Dialogue interface method:

e isTurnSelected():
Method that checks if a turn was selected in the dialogue. Returns true if a turn was se-
lected previously, false otherwise.

e getCurrentTurn():
Method that returns the turn that is currently selected in the dialogue (if available, null if
not).

e selectRootTurn()
Returns the root turn of the dialogue (if available, null if not).

e selectPreviousTurn()
Method that returns the turn that is "before" the last selected turn in the dialogue (if avail-
able, null if not).

e selectNextTurn(Object input)
Method that returns the next turn if the input is valid for the current turn. Returns the de-
sired turn or null, if this turn does not exist.

4.3.5 CONTENT PROVIDER

The content provider is the backend component that is responsible for managing and providing
the contents that are presented to the Users. The CP communicates with the Content Repository
(CR), which stores the content of SUCCESS in a hierarchical way. In addition, the CP communicates
with the Dialogue Manager and converts and provides the required resources from the CR. The
most important tasks of the CP are the:

e Creation of the Content Tree
e Providing of the necessary binary resources

For the creation of the content tree the CP converts data from the CR into YAML format which is
then forwarded to the DM. The content tree contains all necessary meta-data which is needed to
present the content in the Output Platform.

The second important task is the transmitting of the actual binary resources. If the user requests
content, the DM makes a request to the CP with the reference and the CP gives the corresponding
binary resource back to the DM. Figure 23 presents the level 1 class diagram of the content pro-
vider, where the aforementioned main tasks and functionalities are demonstrated.

Public
SUCHESS "



D4.1 Functional specification and integrated architecture report

<<Java Interface=>

at exthexsuccess

@ ContentChangeHandler

<<Java Class>>
(® StaticContentProvider
aterdhexsuccess

@ notifyFullUpdate():woid

4 logger: Logger

4 locale: Locale

4 contentRepUn: Stnng

a client: CloseableHttpClient
o fullContentTree: byte[]

& StaticContentProvider()

@ getFullContentTree(): byte[]

@ setFullContentTree(byte[]):void

@ getLocale():Locale

= setlocale(Locale): void

@ setUpContentProuder(Locale, ContentChangeHander):void

= setNavgationNodes(JsonObject):void

= setContent(JsonObject, List<NavContentNode>):List<NavContentNode>
@ getContentTree(): byte[]

@ getBinaryResource(Stnng):byte[]

& retneveBinaryData(Stnng): byte[]

-na\.igationTree\rO. A1

s

<<Java Interface=>
@ ContentProvider
atexdhexsuccess

<< Java Class>>
®NavigationTree
atexhexsuccess

@ setUpContentProvider(Locale, ContentChangeHander):void
@ getContentTree():byte[]
@ getBinaryResource(Stnng): byte[]

4.3.6 AVATAR

The purpose of the avatar component is to provide a more natural way of interaction with the
SUCCESS system. The avatar is used in lecture sessions to guide the user through dialogue interac-
tions or acts as an interaction partner in roleplay sessions.

The avatar is implemented in Unity and wrapped in an Android fragment activity [3], implement-
ing an Interface that defines how other components can interact with the Avatar component,
shown in Figure 24.

& NavigationTree()

@ getNodes():List<MaugationMode>

@ setNodes(List<MaugationMode>):void
@ getContents():List<ContentNode>

@ setContents(List<ContentNode>):void

~node%/ ~c0ntents&[0. z

<< Java Class>>

=< Java Class=>>

~contents |0.*

<< Java Class=>
(®NavContentNode
atexthex success

& reference: Stnng

®NavigationNode @©ContentNode
atexdhexsuccess atexdhexsuccess
aid: Stnng aid: Stnng
atitle: Stnng 4 type: Strng
atype: String atitle: String
ainfo: Stnng

a thumbnail: Stnng

4 keyword: Strning

4 published: String

4 dementiaStage: Sting
a wordCount: int
areference: Stnng

4 content: String

Public

SUCHFSS




D4.1 Functional specification and integrated architecture report

<=Java Interface== <<lava Clags=»
&9 IUnityPlayerFragment (= UnityPlayerFragment
st.3C.30.hbs success. avatar. android at.3c.30t.hbs. success. avatar. android

© onWindowFocusChangediboolean):void 4 sharedpreferences: SharedPreferences

@ dispatchKeyEvent(KeyEvent).boolean é:Lln'rt:.rF‘IﬂyerFrﬂgment(}
@ onKeyUp(int, KeyEvent). boclean @ onAttach(Context):void
@ onKeyDown(int KeyEvent):.boolean @ onCreate(Bundle):void
@ onGenericMotionEvent{MotionEvent):boolean @ onCreateView (Layoutinflater, ViewGroup, Bundle ) View
@ say(String, Moods, Motions }:veid @ onView Created(View Bundle):void
@ onBackPressed():void @ onActivityCreated(Bundle):void
‘-.}1 @ onDestroyView():void

@ onBackPressed(}:void
| @ onPause(}void
*{ @ onResume(}:void

<«]ava Interfaces» @ onStart():void
&9 lAvatarSpeechQutputListener @ onStop():void
at.ac. ait.hbs . success. avatar. android @ onLowMemory():void

) } @ onTrimMemory(int)void
@ updatedvatarSpeechOutput(String, boolean): void ) . .
@ onConfigurationChanged(Configuration):void

@ avatarSpeechOutputFinished():void |
0..

-avatarSpeechOutputlistener

@ onWindowFocusChanged(boolean ) void

@ dispatchKeyEvent{KeyEvent):boolean

@ onKeyUp(int, KeyEvent).boolean

@ onkKeyDown(int, KeyEvent) boolean

@ onGenericMotionEvent(MotionEvent):boclean
@ say(String, Meods, Motions ) void

@ updateAwvatarSpeechOutput(String ) void
@ updatefvatarSpeechOutput(String, boolean :void
@ queryDelayedSpeechOutput()void

@ setlUnityCallbackilUnityCallback):void

@ getScene():String

@ getAvatarMame():String

@ getLanguagel):String

@ getScreenTitle(}:String

@ getGender():String

@ getRoleplayFilename(): String

@ isTTSEngineActive():boolean

@ initTTSEngine():boolean

@ destroyTTSEngine():void

@ lpad\oice(String, String):boolean

@ canceMTSJob():void

@ openChannel()int

@ setChannelCallback():void

@ setOutputFiles(String, String):void

@ channelSpeak(String):void

The following list provides an overview about each /UnityPlayerFragment interface method:

e onWindowFocusChanged(boolean), dispatchKeyEvent(KeyEvent), onKeyUp(int, KeyEvent),
onKeyDown(int, KeyEvent), onGenericMotionEvent(MotionEvent), onBackPressed()
Those are native Android callback methods that should be implemented by the parent Ac-
tivity and forwarded to the Avatar Fragment, so that certain actions can take place in Uni-
ty, like for example pausing the Avatar animation when the user tabs on the Smartphone.
Public

SUCHFSS .



D4.1 Functional specification and integrated architecture report

e say(String, Moods, Motions)

This method is used tell the Avatar what it should say (through the String argument), along

with which Mood and Motion should be used for the given text (through the Moods and
Motions arguments).

Currently available Moods and Motions are defined as Java Enums, shown in Figure 25.

<<Jlava Enumeration=» <<=Java Enumeration=>

{3 Moods 2 Motions
at.3c.ait. hbs success. avatar android &t.8c. it hbs. success. avatar, android
5P NEUTRAL: Monds %F IDLE: Motion=
% HAPPY: Moods %F AGITATED: Motions
% 54D Moods % HAPPY: Motions
5F ANGRY: Mood= 5P RAISEARM: Motions
Foods() % REACH: Motions
%F TALKING: Motions
& Motions(}

The IAvatarSpeechOutputListener defines callback methods that may be implemented by the par-
ent Activity of the Fragment:

e updateAvatarSpeechOutput(String, Boolean)

The Avatar Fragment calls this method continuously while the Avatar is speaking by provid-
ing the currently spoken word as argument. This enables the parent Activity to show the
currently spoken text to the user, for example in a “speech bubble”.

e avatarSpeechOutputFinished()
This method is called when the Avatar speech output is finished.

The UnityPlayerFragment fragment itself instantiates the UnityPlayer class provided by Unity and

communicates with the underlying Unity engine through the UnityPlayer class and a dedicated
Avatar IUnityCallback interface, depicted in Figure 26.

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

<<lava Interfaces=
3 lUnityCallback

5t.30.30t hbs sucoess svatar android

<<Java Class=>=
{3 UnityPlayerFragment

5t.30.3it hbs sucoess svatar android

=<lava Class»=

{3 UnityPlayer
com. unity3d. player

@ ttsFinished():void

@ stopAvatarOutput()void

@ say(String,String, String):voeid

& sharedpreferences: SharedPreferences

-unityCallback

1

d:UnityPlayerFrﬂgm&nt(}

@ onAttach(Context):veid

@ onCreate(Bundle):void

@ onCreateView(Layoutinflater,ViewGroup,Bundle) View

@ onViewCreated(View,Bundle):void

@ onActivityCreated(Bundle):void

@ onDestroyView():void

@ onBackPressed():void

@ onPause()void

@ onResume():void

@ onStart():void

@ onStop()void

@ unLu.wr.1&mur:.r(.}:'.rmd. smUnityPl
@ onTrimMemory(int):void —
@ enConfigurationChanged(Configurationj:void
@ onWindowFocusChanged(boolean):void

@ dispatchKeyEvent(KeyEvent).boolean

@ onKeyUp(int KeyEvent):boolean

@ onKeyDown(int,KeyEvent) boolean

@ onGenericMotionEvent(MotionEvent):boolean
@ =ay(String, Moods Motions):veoid

@ updateAvatarSpeechQutput(String):veid

@ updateAvatarSpeechOutput(String, boolean):veid
@ gueryDelayedSpeechOutputi):veid

@ setlUnityCallback(lUnityCallback)void

@ getScene():String

@ getAvatarMame(): String

@ getLanguage():String

@ getScreenTitle(): String

@ getGender(): String

@ getRoleplayFilename():String

@ isTTSEngineActive():boclean

@ initTTSEngine():boclean

@ destroyTTSEngine()y:void

@ load\oice(String, String):boolean

@ cancellTSJob():void

@ openChannel():int

@ setChannelCallback()veid

@ setOutputFiles(String, String ) void

@ channelSpeak(String):veid

pyer

a4ac
&b

& UnityPlayer(Context)

@ dizplayChanged(int, Surface)boclean
lFa(RunnabIe}:vuid

@ init(int,boclean ) void

@ getView () View

@ getSettings():Bundle

@ quit{)void

@ pause()void

@ start():void

@ stop():void

@ resume(jvoid

@ lowNemory():void

@ configurationChanged(Configuration):void
@ windowFocusChangediboolean):void

@ injectEvent(inputEvent):boclean

@ onKeyUp(int,KeyEvent):boolean

@ onKeyDown(int KeyEvent):boolean

@ onKeyMultiple(int,int, KeyEvent).boolean
@ onKeylLongPress(int, KeyEvent):boolean
@ onTouchEvent(MotiocnEvent):boclean

@ onGenericMotionEvent(MotionEvent):boolean
@ addViewToPlayer(\View,boolean):boclean
@ remove\iewFromPlayer(\View ):void

@ reportError{String, String):void

The following list provides an overview about the most important UnityPlayer and IUnityCallback

interface methods:

e onWindowFocusChanged(boolean), onKeyUp(int, KeyEvent), onKeyDown(int, KeyEvent),
onGenericMotionEvent(MotionEvent)
Implementations for the native Android callback methods and should be forwarded by the
Avatar fragment using the UnityPlayer class.

e injectEvent(InputEvent)
Unity convenience method to handle different input events registered on the Android de-
vice. It can be seen as a “shortcut” for above mentioned methods.

Public

SUCHFSS

34



D4.1 Functional specification and integrated architecture report

e quit(), pause(), start(), stop(), resume()
Methods used to control the Unity engine runtime behaviour.

e say(String, String, String)
Method used to tell the Avatar what it should say (first argument), along with which Mood
and Motion should be used for the given text (second and third arguments, respectively).

e ttsFinished()
Method used to inform Unity when an Android TTS (text-to-speech) action has finished.

e stopAvatarOutput()
Method used to stop the currently playing Avatar voice and animation output (for example
to skip a dialogue turn because the user heard it already).

Other public methods from the UnityPlayerFragment are only used from within the Unity applica-
tion to communicate with the UnityPlayerFragment Java class.

Using Androids fragment functionality makes this component most flexible regarding its usages
within a running Android application, since any Android activity within an application can make
use of the Avatar fragment, providing an additional way of user interaction and interaction experi-
ence for the SUCCESS application. The usage of the Avatar fragment in one of the SUCCESS An-
droid activities is shown in Figure 27.

<=Java Clazss= <<Java Interface==
(= DialogueActivity ¥ IUnityPlayerFragment
CY.3C.uCY at.ac.ait.hbs. success. avatar android

4 backButton: ImageButton
4 gvatarSpeechBubble: TextWiew

@ onWindowFocusChanged(boolean ) void

@ dispatchKevEvent(KevEvent).boolean

4 contentScrolView: NestedScroliView @ onKeyUp(int KeyEvent)-boolean

@ DialogueA.ctivity() ””"“‘!‘P'EYEFEET_'%,-—-? @ onkKeyDown(int, KevEvent):boolean

<» onCreate(Bundle):void -1 @ onGenericMotionEvent{MotionEvent):boolean
@ updateAvatarSpeechOutput{String, boclean . void @ sayi(string, Moods, Motionsjovoid

@ avatarsSpeechOutputFinished():void @ onBackPressed().void

@ advisorReady () void

@ presentTurn{Turn, Object) void

@ dialogueFinished():void

@ onWindowFocusChanged(boolean ). void
@ dispatchKeyEvent(KevEvent): boolean

<<lava Interfaces=

&# lAvatar SpeechOutputListener

at.ac.ait.hbs. success avatar android

@ onkeyUp(int KeyEvent):boolean

@ onkKeyvDown(int, KeyEvent).boolean @ updateAwvatarSpeechOutput(String, boolean )y void

@ onGenericMotionEvent{MotionEvent).boolean @ avatarsSpeechQutputFinished () void

4.4 PROCESS VIEW

The process view deals with the system processes and how they communicate, and focuses on the
non-functional requirements of the system such as availability, performance, scalability, etc. This
view presents tasks that the system has, interfaces among components within the system, possi-
ble messages sent and received, and how aspects like performance, availability, fault-tolerance,
and integrity are being addressed. In the context of SUCCESS, workflow diagrams will be used

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

which will describe the processes and the interfacing among the main components of the system.
To this end, in the subsection 4.4.1 the process flow of the communication between the Output
Platform and the Dialogue Manager will be defined, mainly focused on the way that the content is
provided to the user. Subsection 4.4.2 will provide the flow of the communication between the
Dialogue Manager and the Content Provider, emphasizing on how both components handle the
content that is provided to the end users.

4.4.1 OUTPUT PLATFORM — DIALOGUE MANAGER

The Output Platform interacts with the Dialogue Manager by rendering the proper content that is
requested by the user. The Output Platform is mainly responsible for coordinating a user driven
process, where it relays the user input to the dialogue manager. According to this, the dialogue
manager pushes the proper information to the Output Platform which provides the means to pre-
sent the information to the end user in a unified manner in order to sustain uniformity.

The workflow diagram in Figure 28 shows the communication between Output Platform and Dia-
logue Manager. At first, the user has to log into the application(Output Platform), through Google
API, and gets authenticated and authorized in order to access the Success application services. As
soon as the user has successfully logged in, he requests the Output Platform for a resource to be
provided(e.g., file, video, lecture, etc.). The request is forwarded to the Dialogue Manager which
then pushes the proper information to the Output Platform to be presented to the user.

User Login
in the app

Application authenicates
the User with Google API

’ I

Google API

User is logged
in the app

YES

User requests
a resource

The resource is
returned to the OP
and presented to the
User

OP forwards the
request to the DM

Dialog Manager
(Adviser)

4.4.2 DIALOGUE MANAGER — CONTENT PROVIDER

The workflow diagram in Figure 29 shows the communication between Dialogue Manager, Con-
tent Provider and Content Repository. When the user installs the app, the DM sets up the CP with
language as parameter. After that, the CP retrieves the whole content tree in the right language
from the CR and parses the tree into turn cards in a YAML file. Simultaneously, the DM registers
the Content Change Handler, to receive possible updates of the content. Afterwards the DM re-

Public
SUCHESS Ny



D4.1 Functional specification and integrated architecture report

trieves the content tree, which returns the YAML file in byte[]. Next, the DM can retrieve the bina-
ry resources with the parameter reference. If the resource is not already stored locally, the CP
retrieves the binary resource of the content from the CR. Irrespective of whether the binary re-
source was already stored locally at the CP or whether it has to be fetched first, the binary re-
source is returned to the DM.

In case the admin makes a change to the content tree, the CP is informed and calls a method of
the previously registered Content Change Handler, which will update the content. Subsequently,
the DM calls the method responsible for the content tree retrieval again, and the flow starts from

this point again.
Dialog Manager sets up
the CP with language User installs |4 Q
and theapp | A
ContentChangeHandler

User
Y
CP retrieves the whole CP parses the tree
content tree in the right P into turn cards in
language from the CR one yml file
the binary resource is
returned to the
output platform and
i Y presented to the user
DM retrieves the
binary resources < DM retrieves the A
with the parameter (new) content tree
ref
A
the CP retrieves the
locally stored binary
resource
Resource is
stored locally the binary
> resource is
NO returned to the DM
\ the CP retrieves the
binary resource
from the CR
CP retrieves
admin makes a new Content
change to the Tree and calls
content tree the method
Admin notifyFullUpdate

4.5 INTERFACES

Since the different stakeholder perspectives were defined in the previous chapters, the fifth view
of the 4+1 view model, the scenario view, will help to capture the requirements so that all the
stakeholders understand how the system is intended to be used. In this context, two approaches
are presented, the first one focuses on the user interfaces, how the user will use the system and
which component provides the functionalities of the application. The second one is the communi-

Public
SUCHESS .



D4.1 Functional specification and integrated architecture report

cation interface that provides a technical representation of the communication among the com-
ponents.

4.5.1 USERINTERFACES

4.5.1.1 OUTPUT PLATFORM

Table 1 depicts the User Interfaces of the Output Platform that have been already implemented at
the first development phase by covering the range of activities defined in the Use Cases. Addition-
ally, it defines the activities that will be implemented in the next iteration of the development
process.

Interface Description
Login Screen The Login Screen provides a graphical interface to the user, which can be used to

login to the platform.

Communication Strategies This screen provides innovative training with the avatar for evidence-based com-
Screen munication and intervention strategies

Situation Guidance Screen This screen provides general methods and guides users to effectively respond to
specific situations

Emotional Support Screen This screen provides strategies for emotional support as to maintain on the carers’
own identity
Care Activities Screen This screen helps carers to create meaningful activities, thus, maintaining a sense

of purpose at the individual’s level of ability.

Siitsneredlel AV eIs Elp =Sl d=l=i This screen assists the users to learn how to cope with behaviours and address
their own feelings and avoid stigmatisation

Various screens will present games to provide an interesting and innovative way of
teaching and guidance

Gamification Screens

Table 1: User Interfaces of the Output Platform

4.5.1.2 PROFILER

The Profiler provides information to various sections of the user interface shown by the output
platform, which is listed in Table 2.

Interface Description

Main Screen Information about how much and which content the user has seen, or “content
progress information”.

Main Screen Information on whether the “diary dialogue” interaction should be initiated again
based on how much time passed since the last “diary dialogue” interaction.

Settings Possibility to reset the content progress to the initial values of 0, i.e. nothing has
been seen yet.

Content list Information on whether a content element is bookmarked

Public
SUCHFSS .



D4.1 Functional specification and integrated architecture report

Content list Information on whether a content element is new

Content list Information on whether a content element was read

Content screen Possibility to add or remove a bookmark from the content

Dialogue content Information for each dialogue turn

Table 2: User Interfaces of the Profiler

4.5.1.3 REWARDER

Table 3 shows the sole user interface that the Rewarder has. It is used to provide the feedback
generated to the user.

Interface Description

Feedback Screen Provides feedback information

Table 3: User Interfaces of the Rewarder

4.5.1.4 ADVISER

Table 4 shows the User Interfaces for the Adviser. The adviser needs to offer a Ul for various con-
tent types and be able to display avatars according to the dialogue execution state. Moreover,
based on user performance data Adviser filters the content accordingly.

Interface Description

Navigation and Content Queries and prepares navigation and content information from the Content Pro-
vider for the Output Platform

Navigation and Content Updates navigation and content elements when changes are published by the Con-
tent Provider

Content list Filters content based on user preference
Dialogue Provides dialogue style interaction with the user
Table 4: User Interfaces of the Adviser

4.5.1.5 CONTENT PROVIDER

As can be seen in Table 5, the Content Provider offers two user interfaces for Administrator users
to be able to manage the Meta Model and the content of the content nodes. It defines the activi-
ties that will be implemented in the next iteration of the development process.

Publie SUCHFSS



D4.1 Functional specification and integrated architecture report

Interface Description

\SEr s EE s e Administrative User Interface for managing the content tree structure i.e. the Meta
terface Model structure (may also be scripted in the first version)

Content Node Management Administrative User Interface for managing the binary content of specific Content
Interface Nodes

Table 5: User Interfaces of the Content Provider

4.5.1.6 AVATAR

As defined in Table 6, the Avatar provides an additional user interface through talking and moving
as well as a simulation of certain interactive situations.

Interface Description

Dialogue Provides an additional user interface and interaction experience through a talking
and moving Avatar

Roleplay Provides a simulation of certain interactive situations for the user with an Avatar

Table 6: User Interfaces of the Avatar

4.5.2 COMMUNICATION INTERFACES

4.5.2.1 OUTPUT PLATFORM

The Interfaces of the Output Platform with other modules are depicted in Table 7. The Profiler
needs to communicate the output of the questionnaires to the Output Platform and provides the
usage metrics needed by the Adviser. In the data level, the Profiler needs to interface with the
User Model in order to be able to retrieve information about the user.

Login User can login to the Google Sign-In Google API HTTPS
application

SVipleidaelslvsl User preferences can  Google Sign-In Google Drive REST APl HTTPS
be stored and syn-

chronized throughout

different devices.

User Actions User can navigate Adviser Java internal Java Objects/binary
through the applica-

tion to retrieve infor-

mation.

Table 7: Communication Interfaces of the Output Platform

4.5.2.2 PROFILER

The Interfaces of the Profiler with other modules are depicted in Table 8. The Profiler provides
interfaces for general application activity as well as interfaces for both adviser and dialogue specif-

Public
SUCHFSS N



D4.1 Functional specification and integrated architecture report

ic activities. In the data level, the Profiler needs to interface with the Profiler Database in order to
be able to retrieve information about the user. The interfaces are internal Java where interfaces
are declared inside another interface or class and exchanges Java objects.

Interfacing Compo- | Type Format

Interface Description
nent

IProfiler Profiler interface  Output Platform Java internal Java Objects
for general appli-
cation activity

A6l eieiillsie] Profiler interface  Adviser Java internal void
for adviser spe-

o o Output Platform
cific activities

|pIEI el efllsd Profiler interface  Adviser/Dialogue Java internal Java Objects
for dialogue spe-
cific activities

HdeiilSipE =L Database inter- ProfilerDatabase Java internal Java Objects
face to read and

write user profile

data

Table 8: Communication Interfaces of the Profiler

4.5.2.3 REWARDER

Table 9 lists the interfaces the Rewarder shares with some of the components of the SUCCESS so-
lution. Due to the fact that this component is under development the specific interfaces are not
defined yet, but the description of the interfaces that are intended to be used is provided.

s Send Output Requests  Output Platform
for Feedback

Receive User Interac-
tion data

Receive feedback con- Content Provider
tent nodes

Send Performance Profiler
Measures

Receive Performance
Metrics

Table 9: Communication Interfaces of the Rewarder

4.5.2.4 ADVISER

Table 10 lists the interfaces of the Adviser with the other components of the SUCCESS solution.
According to the current state of the architecture, most interfaces are internal Java where inter-
faces are declared inside another interface or class and exchange Java objects. The Adviser com-

Public
SUCHFSS N



D4.1 Functional specification and integrated architecture report

municates with the Output Platform by generating real time interaction instructions for the Out-
put platform’s avatar component.

IAdvisor Provide naviga- Output Platform Java internal Java Objects
tion/content tree and

select naviga-

tion/content nodes

Query binary re- Output Platform Java internal binary
sources
[AGelideidecl o€ | Callback interface en-  Output Platform Java internal Java Objects

abling the Adviser to
push information to
components using the
Adviser

|pIEIer{llsez ] sE[e¢| Callback interface en-  Output Platform Java internal Java Objects
abling the Dialogue to

push information to

components using the

Dialogue

Table 10: Communication Interfaces of the Adviser

4.5.2.5 CONTENT PROVIDER

Table 11 lists the interfaces the Content Provider shares with the other components of the SUC-
CESS solution. The Meta Model APl which is used to transverse the Content Tree that is shared
with three components (Rewarder, Adviser and Output Platform) and the data will be in YAML.
The actual contents of content nodes will be transmitted to the Adviser in binary format and the
data from the Content Repository will be in JSON format.

Interface Description Interfacing Component | Type (REST, queue, Format

e (e.g. json)

\SERseEs This interface will allow Rewarder Java internal YAML
el API interaction with the Con-

tent Tree (traversing the

tree and node structure) Output Platform

Adviser

(@elgii=la AN This interface will provide  Adviser Java internal binary
binary content from specif-
ic content nodes

HEeleditelas | This interface will provide  Content Provider REST JSON
API data (content, content .
binary
tree) from the Content
Repository

Table 11: Communication Interfaces of the Content Provider

Public
SUCHFSS "



D4.1 Functional specification and integrated architecture report

4.5.2.6 AVATAR

Table 12 lists the interfaces the Avatar shares with the Output Platform. The interfaces are intend-
ed to provide the actual interaction among the Avatar and the Output Platform and based on the
current state of development, most interfaces are internal Java and exchange Java objects.

Interfacing Compo- Type Format

Interface Description
nent

IUnityPlayerFragment Provides the means Output Platform Java internal Java Objects
to interact with the
Avatar

|AvatarSpeechOutputlistener Jeclll I« iltls cles] Output Platform Java internal Java Objects
enabling the parent

Activity to react on

currently spoken

text by the Avatar

Table 12: Communication Interfaces of the Avatar

Public
SUCHFSS -



D4.1 Functional specification and integrated architecture report

REFERENCES

[1] Kruchten, Philippe B. "The 4+ 1 view model of architecture." IEEE software 12.6 (1995): 42-50, availa-
ble online: http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf, last accessed:
17/07/2018

[2] https://developer.android.com/topic/libraries/architecture/room

[3] https://developer.android.com/guide/components/fragments

Public
SUCHESS »


http://www.cs.ubc.ca/%7Egregor/teaching/papers/4+1view-architecture.pdf

	ABBREVIATIONS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	1. ABOUT THIS DOCUMENT
	1.1 Role of the deliverable
	1.2 Relationship to other SUCCESS deliverables

	2. Introduction
	3. System Architecture
	4. Architectural View Model
	4.1 Physical View
	4.2 Development View
	4.3 Logical View
	4.3.1 Output Platform
	4.3.2 Profiler
	4.3.3 Rewarder
	4.3.4 Adviser
	4.3.5 Content Provider
	4.3.6 Avatar

	4.4 Process View
	4.4.1 Output Platform – Dialogue Manager
	4.4.2 Dialogue Manager – Content Provider

	4.5 Interfaces
	4.5.1 User Interfaces
	4.5.1.1 Output Platform
	4.5.1.2 Profiler
	4.5.1.3 Rewarder
	4.5.1.4 Adviser
	4.5.1.5 Content Provider
	4.5.1.6 Avatar

	4.5.2 Communication Interfaces
	4.5.2.1 Output Platform
	4.5.2.2 Profiler
	4.5.2.3 Rewarder
	4.5.2.4 Adviser
	4.5.2.5 Content Provider
	4.5.2.6 Avatar



	REFERENCES

