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D2.2 Executive Summary 

This report concerns objective criteria that measure: global quality, intelligibility, 

saliency and sharpness of sounds. First, these algorithms are resumed in identification 

sheets that help to identify the best algorithm for I’City For All project. We focus on 

existing criteria of global quality and intelligibility which can be adapted for public 

environments and presbycusis persons. The selected algorithms are based on different 

models. Some of them are based on auditory perception, like PESQ which predicts 

effectively global quality. These types of algorithms are more likely to be fit for 

presbycusis problems. We selected also algorithms that are based on acoustic parameters 

which predict intelligibility regarding to reverberation and loudspeaker effects due to the 

target environment of I’City For All.  

We also propose new criteria to measure intelligibility: the sharpness index inspired from 

image processing. This is a new measure of audio clarity that can be adapted for 

presbycusis problems thanks to its range of sensibility regarding noise and reverberation. 

Besides, we suggest to measure auditory saliency to predict the attractive power and the 

ease of recognition of vocal announces and car alarms for our target audience.  

 

Keywords: intelligibility, global quality, saliency, sharpness, clarity. 
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General introduction 

The objective of this report is to give an overview of the existing objective speech quality 

and intelligibility assessment algorithms. We focus however on the assessment methods 

open to be fit to the different requirements of the I’City for All project, namely the 

assessment of: 

- intelligibility and clarity of vocal announces for all 

- global listening quality and comfort for all 

- saliency of vocal announcements and jingles for all 

This report is organized in two parts. The first part gives identification sheets for each 

assessment algorithm, each of them being detailed in the second part of the report. 

The second part is structured in two categories of assessment criteria: 

- Classical and standardized quality and intelligibility assessment algorithms: the selected 

assessment methods presented in this part are based on perceptual aspects and frequency 

octave/bark band analysis, thus allowing for fitting to take into account presbycusis.  

- Recently proposed for AAL I’City for All project audio saliency and sharpness 

assessment methods: both inspired from image processing and adapted here to measure 

the saliency and the sharpness of sounds. 
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PART I 

 

Identification sheets  

of objective assessment algorithms and criteria 
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Global quality and Intelligibility “For All” 

Measure of Quality  

Name Frequency weighted variant signal to noise ratio (fwvarSNR) 

Applications Used to test noise reduction algorithm [9]. 

Model 

𝒇𝒘𝒗𝒂𝒓𝑺𝑵𝑹

= 𝑾𝟎 + ∑𝑾𝒋  [
𝟏

𝑴
∑ 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 [

𝑭𝟐(𝒎, 𝒋)
(𝑭(𝒎, 𝒋) − �̂�(𝒎, 𝒋)𝟐)

⁄ ]

𝑴

𝒎=𝟏

]

𝑲

𝒋=𝟏

 

The frequency weighted variant signal to noise ratio is computed in the 

frequency domain and expressed as follows: 

Where 𝑴 is the number of frames, 𝑲 the number of filters in the filter 

bank, 𝑾𝒋 the weight of the j th frequency band,  𝑭(𝒎, 𝒋) the amplitude 

of the jth frequency band of clean signal, �̂�(𝒎, 𝒋) the amplitude of jth 

frequency band of noisy signal. 

Inputs  Intrusive measure that take as input : 

 clean and degraded speech 

 

Outputs This criterion gives an SNR measure in dB. 

Complexity Computed frame by frame, the fwSNR can be running in real time 

with parallel processing for each band. An overall SNR can be 

computed for each sentence. 

Known limits The criterion was not tested for long reverberation time and it doesn’t 

takes into account non-linear distortion. 

Known performances 

and conditions of 

evaluation 

In [9], the fwSNR was tested with subjective overall quality measure. 

With 25 frequency bands, the fwSNR predicted score reaches up to 

0.8 correlation with subjective score and an error standard deviation 

of 0.36.  

Interests for the  

I’City For All Project 

The fwSNR is simple to use and can be adapted for different subjective 

measure and population.  
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Possible adaptation for 

presbycusis 

The fwSNR can be adapted for presbacusis with two methods : 

- Adapt the frequency band weight in order to correlate the fwSNR 

with presbycusis subjective measure. 

- Consider the hearing loss of presbycusis as an internal noise for 

each frequency band. This noise can be added as an SNR for each 

band depending on the audiogram of the subject. 

Observations This measure is based on the original frequency weighted SNR [5]. 

Algorithm available in Matlab. 

References [5] [6] [9] 
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Measure of Global quality (Mean Opinion Score) 

Name Perceptual Evaluation of Speech Quality (PESQ) 

Applications Used to test speech quality in telephony system. PESQ takes into 

account, noise, codec degradation, packet loss… 

Model PESQ is a standard objective algorithm that is based on 

psychoacoustic model. Perceptual internal signal representation is 

computed using auditory model following the steps illustrated below : 

 

Descriptive schema of PESQ model 

Inputs  Intrusive measure that take as input : 

 clean and degraded speech 

 

Outputs Mean Opinion Score (MOS) between 1 and 4.5. 1 for bad quality and 

4.5 for excellent quality. 

Complexity Even if PESQ is based on frame by frame processing, we cannot run it 

in real time because ‘time alignment’ requires the entire sentence to 

find the best alignment between degraded and clean signals.  

Known limits 
The criterion was not tested for room reverberation degradation and 

public address systems.  

Known performances 

and conditions of 

evaluation 

For 22 known ITU benchmark experiments, the average correlation 

was 0.935. The figure below gives mapping between subjective score 

and PESQ score. 
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Mapping between subjective score (abscissa) and PESQ score (ordinate) 

 

Interests for the  

I’City For All Project 

PESQ algorithm takes into account perceptual hearing features that can 

be used to simulate the perceived quality of announces. 

Possible adaptation for 

presbycusis 

The psychoacoustics models implemented in PESQ can be modified to 

reflect the hearing loss of presbycusis. In fact the absolute hearing 

level can be modified together with masking effect.  

Observations PESQ was extended to a new objective algorithm named Perceptual 

Objective Listening Quality Assessment (POLQA) that takes into 

account super wideband for speech communication and reverberation.  

Algorithm is available in Matlab and C. 

 

References ITU-T recommendations P.862/P.862.1/ P.862.2/ P.862.3 
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Measure of Intelligibility 

Name Speech-based Speech Transmission Index (Speech-based STI) 

Applications Used in public address communication systems. 

Model 
The speech-based STI is an intelligibility measure that is based on 

speech modulation frequency to compute an intelligibility score. It’s 

derived from STI measure that uses synthetic signal to compute 

intelligibility score. The speech-based STI uses real sentences to extract 

Modulation Transfer Function (MTF). One of methods that computes 

the MTF from speech is the envelope regression method and it is 

expressed as follows : 

𝑚𝑘 =
𝜇𝑥𝑘

𝜇𝑦𝑘

𝐸{(𝑥𝑘(𝑡) − 𝜇𝑥𝑘)(𝑦𝑘(𝑡) − 𝜇𝑦𝑘)}

𝐸{(𝑥𝑘(𝑡) − 𝜇𝑥𝑘)2}
 

Where 𝜇𝑥𝑘 and 𝜇𝑦𝑘 are the temporal mean of 𝑥𝑘(𝑡) and 𝑦𝑘(𝑡) . 𝑥𝑘(𝑡) 

and 𝑦𝑘(𝑡) are the temporal envelopes of speech filtered by kth octave 

band filter. 

 

Inputs  Intrusive measure that takes as input : 

 clean and degraded speech 

 

Outputs Intelligibility score correlated with the standard STI score. 

Complexity Speech-based STI can be used in real time situation but with frame 

size above 0.3s to keep good correlation with STI. 

Known limits 
Not effective with short frame size. 
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Known performances 

and conditions of 

evaluation 

 

 

Metric computed from ER with noise in left column and ER with 

noise+reverberation vs. Theoretical STI using 0.3 s windows in top and 78ms 

windows in bottom. The solid lines represent best linear fits to the data. [19] 

Interests for the  

I’City For All Project 

Takes into consideration noise and reverberation degradation. Less 

restrictive for real live test in railway station.  

Possible adaptation for 

presbycusis 

The same adaptation can be done for STI and speech based STI in two 

different ways :  

- Adapt the model by for example varying the masking effect in 

function of age. 

- Adapt the scale of STI scores to reflect the perceived intelligibility 

as it was done in IEC standard of STI. 

Observations Other method was developed [17] to compute speech-based STI like 

Normalized Correlation (NC) method and real cross-power spectrum 

method. 

A CEA Linklab implementation of the algorithm is available in Matlab.  

References [12][13][16][17][19] 
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Measure of Intelligibility 

Name Coherence Speech Intelligibility Index (CSII) 

Applications Used for hearing aid evaluations. 

Model 
The CSII is an extension of SII ANSI standard to cover the nonlinear 

distortion introduced by enhancement algorithm. The model is based on 

the coherence measure to predict effective noise from speech signal. 

The SNR becomes then a Signal-to-noise and Distortion Ratio (SDR) 

and it is computed as follows: 

𝑆𝐷𝑅(𝑗) =
∑ 𝑊𝑗(𝑘)�̂�(𝑘)𝐾

𝑘=0

∑ 𝑊𝑗(𝑘)�̂�(𝑘)𝐾
𝑘=0

    

 

�̂�(𝑘) = |𝛾(𝑘)|2𝑆𝑦𝑦(𝑘)       

�̂�(𝑘) = [1 − |𝛾(𝑘)|2]𝑆𝑦𝑦(𝑘)      

 

|𝛾(𝑘)|2 =
|∑ 𝑋𝑚(𝑘)𝑌𝑚

∗ (𝑘)𝑀−1
𝑚=0 |2

∑ |𝑋𝑚(𝑘)|2𝑀−1
𝑚=0 ∑ |𝑌𝑚(𝑘)|2𝑀−1

𝑚=0

        

 

 �̂�(𝑘) and �̂�(𝑘) predicted speech and noise power spectra 

 |𝛾(𝑘)|2 coherence measure 

 𝑆𝑦𝑦(𝑘)  auto-spectral density 

 𝑋𝑚(𝑘) and 𝑌𝑚(𝑘) are the spectra of mth window of clean and 
degraded speech 

The CSII is computed in three amplitude regions of speech envelope 

and we obtain the intelligibility score as follows : 

𝑐 = −3.47 + 1.84𝐶𝑆𝐼𝐼𝑙𝑜𝑤 + 9.99𝐶𝑆𝐼𝐼𝑀𝑖𝑑 + 0.0𝐶𝑆𝐼𝐼𝐻𝑖𝑔ℎ       

𝐼3 =
1

1 + 𝑒−𝑐
           

Inputs  Intrusive measure that takes as input : 

 clean and degraded speech 
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Outputs CSII score between 0 and 1. 

Complexity The criterion is computed frame by frame but not in real time.  

Known limits 
Not effective for reverberation. 

Known performances 

and conditions of 

evaluation 

 

Proportion of the HINT sentences indentified correctly plotted versus the 

three-level CSII intelligibility predictions I3 for the normal-hearing 

subjects 

Interests for the  

I’City For All Project 

Takes into consideration additive noise like (railway station noise) and 

nonlinear noise introduced by enhancement algorithm. 

Possible adaptation for 

presbycusis 

Considers the hearing loss of presbycusis as an internal noise for each 

frequency band. This noise can be added as an SDR for each band 

depending on the audiogram of the subject. 

Observations The CSII is based on SII standard and differs only in computing the 

effective SNR. We use the same weights for each band as for SII. 

The algorithm is not available.  

References [21] 
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Measure of Intelligibility 

Name Useful-to-detrimental ratio 

Applications Room acoustic quality. 

Model 
The useful-to-detrimental ratio is expressed as follows [23] : 

𝑈𝑡𝑒 = 10 𝑙𝑜𝑔 [
𝑅𝑡𝑒

(1 − 𝑅𝑡𝑒) + 10(−𝑆 𝑁⁄ ) 10⁄
]      

𝑆 𝑁⁄  is the signal to noise ratio 

𝑅𝑡𝑒 is the ratio between early and total energy: 𝑅𝑡𝑒 = 𝐸𝑒/(𝐸𝑒 + 𝐸𝑙)  

‘𝑡𝑒’ is the time limit between late sound arrival and early time arrival 

 
 

Inputs  Non-intrusive measure that takes as input : 

 Room impulse response 

 

Outputs SI score between 0% and 100% of speech recognition. 

Complexity Easy to compute. The intelligibility can be predicted quickly if we 

know the room impulse response. 

Known limits 
Does not take into account Non-Linear degradation and speech 

enhancement algorithms. 

Known performances 

and conditions of 

evaluation 

 

The Speech Intelligibility (SI) is predicted for ‘𝑡𝑒’ 80ms as follow : 

 

𝑆𝐼 = 95.65 + 1.219 𝑈80 − 0.02466 𝑈80
2 + 0.00295 𝑈80

3  
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Measured speech intelligibility scores versus 1kHz U80 values and 3rd order 

polynomial best fit with STD error 7.5% 

Interests for the  

I’City For All Project 

Takes into consideration additive noise and room reverberation. 

Possible adaptation for 

presbycusis 

The Useful-to-detrimental ratio is computed for different reflected 

frequencies. The idea is to find the frequencies that represent the 

presbycusis person. 

Observations This measure is a variant of clarity measure [22] that doesn’t take into 

account noise degradation. 

Algorithm is not available.  

References [23] [22] 
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Measure of Intelligibility 

Name Equivalent Signal to Noise ratio (SNeq) 

Applications Room acoustic quality 

Model 
 

 

Method of (S/N)eq computation 

 

Inputs  Non-intrusive measure that takes as input : 

 Room impulse response 

 Loudspeaker impulse response 

 Signal-to-Noise Ratio of the room 

 

Outputs Signal to effective noise ratio in dB. 

Complexity  The required inputs add complexity to the algorithms. This measure can’t be 

done online. 

Known limits 
Tested for one position of transmitter/receiver. Use single loudspeaker. Don’t 

take into account enhancement algorithm. 
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Known 

performances and 

conditions of 

evaluation 

 

The regression line with intelligibility score is obtained as follows :  

𝐼(%) = 100(1 − 10−[(𝑆/𝑁)𝑒𝑞+40]/(60×0.18))2203        

 

Measured speech intelligibility scores versus (S/N)eq predictor corresponding 

values and best least-squares fit 

Interests for the  

I’City For All 

Project 

Measure of speech intelligibility including room, loudspeaker and 

background noise influence. 

Possible 

adaptation for 

presbycusis 

As for Useful-to-detrimental ratio we can find the frequencies that are 

significant for presbycusis person and adapt the measure in this perspective. 

Observations Algorithm is not available.  

References [26] 
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Applying auditory saliency in the context of the I’City For All Project 

 

Several urban places dedicated to public transport (airports, train stations...) use vocal 

announces to communicate information to passengers. One aspect of the AAL I'City for 

All project is to enhance the intelligibility of such announces so that every passenger 

could understand the messages despite the degraded listening conditions in those 

environments (e.g. ambiant noise due to the crowd and the traffic, reverberation, poor 

loudspeakers quality) aggravated by impaired hearing. Some of us are working on 

objective measures to predict the intelligibility of a speech signal, measures that would 

take into account all degradation types including presbycusia.  

 However, even if a vocal announce is intelligible, i.e. if the entire message of the 

nnounce is actually understandable, it does not mean that passengers will listen to it. 

Indeed, during the diffusion of the announce, users could be engaged in another task in 

parallel (like phone call, reading, video game...). It is therefore very important that 

announces attract the attention of the concerned users. The ability for a sound to attract 

attention is referred as auditory saliency.  

 Furthermore, listeners suffering from presbycusia generally report some difficulties 

to segregate the different sources of a complex acoustic scene and to focus on one 

specific sound of this noisy environment. Despite these difficulties, they can achieve the 

same speech recognition performances than normal listeners at the cost of high mental 

effort leading to auditory fatigue [12]. Now, previous studies on visual and auditory 

perception have demonstrated that the perceptual processing of a salient object, either a 

sound or a picture, requires very few cognitive resources compared to the processing of a 

non salient object. Therefore, increasing the saliency of vocal announces will reduce the 

auditory fatigue “for all” passengers.  

 Our goal is therefore to establish some objective measures to predict the auditory 

saliency of a vocal announce, depending on different acoustic parameters like signal-on-

noise ratio, signal spectrum, voice type or even intelligibility. The final objective is to 

define some guidelines to conceive and produce salient intelligible announces, as well as 

enhancement algorithms that would correct the different degradation applied on the 

signal in terms of saliency and intelligibility.  
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Overview of auditory saliency measures 

 

While a lot of visual saliency models have been investigated, the idea of modeling 

auditory attention is relatively new and very few auditory saliency models are available. 

Auditory saliency models should be able to detect sounds and predict which ones should 

be treated first by the auditory system. We would consider as salient, sounds that can be 

noticed without attention or that can capture the listeners' attention and cause them to 

shift their attention from the currently attended task.  

 

 Several issues make the modeling of auditory saliency a challenging task.  First, 

even if auditory and visual systems are similar in many ways, they differ in the features 

used to analyze complex scenes. In vision, the basic features of early processing have 

been extensively studied since the Feature Integration Theory (see Annex 1). The 

conception of visual saliency models is made easy through the analysis of, for example, 

color, luminance, orientation, shape or contrast. On the contrary, very few primitives 

have been determined in audio. It is therefore more complex to define the appropriate 

feature set of an auditory saliency model. Basically, auditory models presented in the 

current section rely on intensity and temporal or spectral modulations.  

 A second issue in defining auditory saliency models is the fact that audio has a 

temporal component. The auditory scene is constantly changing over time. On the 

contrary, the visual saliency models work on still images not varying in time. 

Furthermore, in hearing there is an effect of temporal masking that can be either 

backward or forward masking. Therefore both past and future sounds are important to 

predict what is heard and salient. Time should be treated carefully.   

 Finally, research on auditory saliency could have been reduced because of the 

difficulties in evaluating the models. Visual saliency models are evaluated by comparing 

the predicted salient regions with the areas actually looked at by participants during eye-

tracking experiments. Since the auditory system does not have any physical correlate that 

can be easily measured, i.e. it is not possible to directly measure what is actually listen to, 

it is difficult to evaluate the auditory saliency models. Annex 5 discusses the 

experimental protocols that have been suggested for auditory saliency evaluation.  

 

 Despite all these difficulties, six models have been developed to measure auditory 

saliency. As summarized in Error! Reference source not found., the three first methods 

are biologically inspired and simply rely on the application of a well-known visual 

saliency measure [14] on the spectrogram or cochleogram of the sound. On the contrary, 

the three other methods do not mimic the auditory system and do not require, in a first 

step, to transform the sound in a picture. The rest of this section presents a summary of 

each method. A more detailed description is available in the annexes.  
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Classification of auditory saliency models 
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Measure of Auditory Saliency 

Name Kayser’s model 

Model The principle is to apply a visual saliency model to a visual 

representation of the sound. Biologically inspired, it mimics the 

auditory perceptual system.   

The model is decomposed in several steps: 

1) Basic spectrogram: Decompose the signal in a visual 

representation of frequency over time  

2) Extracting features, i.e. applying a visual saliency model on 

the spectrogram. The spectrogram is analyzed at different 

scales (gaussian pyramid) through gabor filters. Then the 

different scales are compared through a center-surround 

mechanism to obtain three feature maps: 

- intensity 

- frequency modulations (vertical variations) 

- temporal modulations (horizontal variations) 

3) Inhibition stage = normalization of each maps to promote or 

suppress some of the feature 

4) Association (weighted averaging) of the 3 normalized maps to 

obtain a saliency map  

5) OUR IMPROVEMENT: averaging over each frequency bands 

to obtain a saliency curve 

The complete algorithm is in Annex 2. 

Inputs  Recording of the degraded signal 

Outputs A saliency map (to super-imposed to the spectrogram) indicating 

which zone of the spectrogram is more salient. A saliency score is 

suggested as the peak level of the saliency map. 

We suggest transforming the saliency map into a saliency curve 

indicating the evolution of saliency level over time. 

Example 
Basic example obtained with a short tone followed by a long tone in a 

white Gaussian noise.  

Waveform 
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Spectrogram 

 

Saliency map 

 

Saliency curve 

(not in the 

original paper) 

 

One can observe three highest peaks. The first 

peak indicates the position of the first tone then 

the two last peaks indicate the beginning and the 

end of the long tone. 
 

Complexity Visual representation requires a frame by frame analysis. 

Complexity also increases with the resolution of the spectrogram (i.e. 

the number of pixel of the visual representation). 

Applications Originally it was only evaluated in laboratory conditions to test the 

correlation between the model estimation and the perceived saliency. 

It could be used applied to vocal announces as well as sound alarms in 

car to predict the detection of such messages. 

Interests for the I’City For 

All Project 

It is the first so the must known auditory saliency measure. 

Not intrusive 

Known limits Used future sample to compute the normalized features so is not usable 

for real time processing. 

Takes very few parameters into account. Other acoustic parameters 
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that could be important for saliency measure are not known yet. 

Experimental procedures are limited both due to stimuli limits (no 

evaluation on speech) and experimental tasks (detection level is not 

exactly saliency level, defining saliency to participants is difficult) 

Known performances and 

conditions of evaluation 

1) Reproduces basic properties of auditory scene perception as 

demonstrated with basic examples (long tone more salient than 

short ones, modulated tones more salient than stationary tones, 

the second of a sequential pair of tones is less salient, missing 

parts in a broad spectrum are salient) 

2) Well correlated to human performances according to laboratory 

tests on environmental sound snippets:  

- pairwise comparison (2AFC test) where the task is to choose the 

most salient sound between two possibilities (significant 

correlation of 0.470.1, p<0.05) 

- detection task: salient sounds are detected more often (81% 

versus 71%) than less salient sounds even if their intensity is low 

compared to the background noise level (spearman rank correlation 

r=0.56, p<0.01)  

3) Well correlated to macaque monkey behavior (they turn their 

head more in the direction of a sound if it is salient)  

Possible adaptation for 

presbycusis 

During the frequency analysis used for processing the spectrogram, it 

is possible to mimic the loss of high frequency hearing by applying a 

frequency weighting.  

The normalization step takes forward masking into account. It is 

maybe possible to modify this step to take other masking effects into 

account. 

Using a different weighting to associate the three features is also a way 

to adapt the measure to the elderly as they may rely more on one of the 

features.  

References [16] 

 

Related methods The Kayser’s model relies on the Itti & Koch’s model dedicated to 

visual saliency measurement [14]. 

Models from Duangudom [8],[7], Kalinli [15] and de Coensel are some 

extensions of the Kayser’s model. 
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Measure of Auditory Saliency 

Name Kalinli’s model 

Model Equivalent to Kayser’s model except first and second stages 

1) Auditory spectrogram (modelling early auditory processing, 

equivalent to cochleogram) 

2) Feature extraction. Same procedure but more features are 

extracted (intensity, frequency modulations, temporal 

modulations + orientation of pitch variations) 

3) Normalization 

4) Association of the different maps 

Inputs  The degraded signal 

Outputs Saliency map  

Example Not implemented  

Complexity Almost the same as in Kayser’s model 

Applications Used to determine accent in prosody 

Recently used for phoneme separation and speech recognition 

Interests for the  

I’City For All Project 

Reveal that different visual representations can be used. It could be 

an interesting parameter to vary for a presbycusis adaptation. 

More complete than Kayser’s model as more features are taken into 

account. 

Not intrusive. 

Known limits No real-time. 

No evaluation was carried out to compare subjective performances 

of naïve listeners to objective measures.  

The pitch feature finally causes performance degradation. 

Known performances and 

conditions of evaluation 

Model prediction was compared to expert annotation of prominent 

syllables 

Possible adaptation for 

presbycusis 

Similar as those proposed for the Kayser’s model. 
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References [15] 

Related methods Based on the visual saliency map model of Itti [14] and the 

extended the auditory saliency map model of Kayser.  
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Measure of Auditory Saliency 

Name Duangudom’s model 

Model Biologically inspired.  

Equivalent to Kalinli’s model except second stage (so equivalent to 

Kayser’s model except 1
st
 and 2

nd
 stages) 

1) Auditory spectrogram 

2) Feature extraction = overall energy distribution + temporal 

modulations + frequency modulations + areas with simultaneous 

temporal & frequency modulations 

1) Normalization 

2) Saliency map obtained by association of the different feature 

maps 

Inputs  Degraded signal 

Outputs Saliency map or saliency curve 

Example Not implemented as it is too close from Kayser and Kalinli’s models 

Complexity Almost the same as in Kayser’s model 

Applications Used to find acoustic parameters that influence auditory saliency 

Interests for the  

I’City For All Project 

The main interest resides in the evaluation protocols used to evaluate 

this model.  

Otherwise the model itself is too close from Kalinli’s and Kayser’s 

models. 

Not intrusive. 

Known limits Tested with various stimuli but never with the same protocol so it is 

not possible to assure the efficiency of this model for all kind of 

stimuli especially for voice. 

Known performances and 

conditions of evaluation 

1) Reproduces basic properties of auditory scene perception as 

demonstrated with basic examples. 

2) Well correlated to human performances in three experiments: 

- Pairwise sound comparison (average correlation between 

participants and model responses = 0.47, std = 0.22) 

- Comparison of five 1 second movie segments of a 5 seconds 
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extract (mean correlation between participants and model 

responses = 0.48, std= 0.11, p=0.003) 

- Dual task experiment with laboratory stimuli (pure tones): 

primary task = counting low tones in a sequence, secondary 

task = detection of a modulated noise. Increasing saliency of 

the modulated tones improved performances of both primary 

and secondary tasks. 

Possible adaptation for 

presbycusis 

 Similar than those proposed for Kayser’s model  

References [7], [8] 

Related methods Based on the visual saliency map model of Itti [14] and extended 

the Kayser’s model.  
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Measure of Auditory Saliency 

Name Discrete Energy Separation Algorithm (DESA) 

Model  The model is based on the Teager-Kaiser energy used for detecting 

amplitude and frequency modulations in AM-FM signals. 

FOR EACH TIME FRAME:  

Step 1: Multiband demodulation analysis (Gabor filtering)  

FOR EACH SAMPLE OF THE FRAME: 

Step 2: Computation of the Teager-Kaiser energy for each 

sample 

Step 3: Choosing the frequency band of step 1 that maximize 

the Teager Kaiser energy 

Step 4: Compute the instant frequency and the instant 

amplitude 

Step 5: averaging the Teager-Kaiser energy, the instant amplitude 

and the instant frequency over all the samples of the frame and 

normalized each feature 

Step 6: combining the three averaged and normalized features to 

obtain the saliency score of the frame.  

Step 7: thresholding to detect salient events 

Inputs   The degraded signal 

Outputs  A saliency curve indicating the evolution of saliency level over 

time + time of salient events. 

Complexity Frame by frame filtering  

Only 6 frequency bands (compared to the 256 frequency bands of 

the Kaiser’s spectrogram) 

Applications Used by Evangelopoulos et al for video summarization and speech 

detection in noise [9] [10]. 

Used by Coutrot et al to predict saccades in eye movements (muti-

sensory perception) [5] 

Interests for the  

I’City For All Project 

Computation times are reduced compared to those of previous 

models.  

The number of samples from the future required to compute the 

DESA measure is very limited so it can be more easily adapted to 
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real time. 

Not intrusive. 

Known limits No real-time 

Not really evaluated as a predictor of human behaviour. 

Known performances and 

conditions of evaluation 

Evaluating by comparing annotations on movies from expert 

annotators. 

Possible adaptation for 

presbycusis 

Possible to process instant amplitude and instant energy not only in 

the frequency bands that maximize the Taiger-Kaiser energy but in 

all frequency bands and then ponderate the contribution of each 

band. 

References [9], [10], [5] 

Related methods Based on studies about detection of modulations in AM-FM signals 

with Taiger-Kaiser [Kaiser1990].  
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Measure of Auditory Saliency 

Name Auditory Saliency Using Natural statistics (ASUN) 

Model The principle is to compute the difference between the signal at time k 

and the expected signal at the same time knowing the past samples. 

The difference measure is computed over different features directly 

obtained through a Principal Components Analysis on the past 

samples. 

Inputs   Degraded signal 

Outputs  A saliency map + a saliency curve  

Example With the same example as in Kayser’s model, i.e. a short plus a long 

tone (example from [25]):  

Cochleogram 

 

Saliency map 

 

Saliency 

curve  
 

 

Applications Not indicated. 

Interests for the  

I’City For All Project 

Does not require any sample from the future.   

Not intrusive. 

Known limits The past samples and PCA measures are updated only every 250 ms 

due to computional limits. Optimization is required.  

Known performances 

and conditions of 

Pairwise comparison with participants having to choose the most 
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evaluation “interesting sound”.  

Pearson correlation between ratings of participants and predictions by 

the model are equal in mean equal to 0.3262 (Standard Deviation = 

0.0635) and is higher with urban and animal sounds than with other 

environmental sounds.  

Possible adaptation for 

presbycusis 

The use of cochleogram instead of a simple spectrogram confirm the 

hypothesis that it is possible to use a visual representation of the sound 

that take into account a model of hearing loss. 

References [25] 

Related methods Based on the visual saliency SUN model [27]. 
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Measure of Auditory saliency 

Name Bayesian surprise 

Model It relies on a probabilistic model of the signal’s frequency 

distribution applied on the spectrogram of the sound. 

Inputs  speech/synthetic signal/impulse response 

 

Outputs Saliency curve, i.e. saliency score S(t) for each time t 

Example A matlab implementation of the algorithm is available online at:  

http://www.mathworks.com/matlabcentral/fileexchange/33573-gaussian-surprise-

and-running-windowed-mean-variance 

A demonstration is included with the sound file downloadable at: 

 https://cvhci.anthropomatik.kit.edu/~bschauer/code/data/surprise_demo.22k.wav 

Complexity Low compared to center-surround approaches. 

Authors give an estimation of 1.5 sec to process 1 min of sound 

Applications Control of computational resources of humanoid robots (control 

sensor orientation in direction of salient sounds to optimize the 

scene analysis). Association with visual saliency measures for 

multimodal attention modeling. 

Interests for the  

I’City For All Project 

Low run-time so is more appropriate for real-time measurements.  

Not intrusive.  

Known limits Algorithm parameters substantially influences the performances and 

run-time so it will needs some tests to adjust the parameters to our 

application. 

Known performances and 

conditions of evaluation 

Measures of precision and recall in a detection task of salient 

acoustic events previously annotated by one expert. The database is 

the CLEAR2007 database composed of recordings of meetings.  

Possible adaptation for 

presbycusis 

As in Kayser’s model, the importance of each frequency band 

contribution can be ponderated to be adjusted to the perception of 

presbycusis listeners. 

References [21] 

Related methods Extended previous works of the authors [22] 

https://cvhci.anthropomatik.kit.edu/~bschauer/code/data/surprise_demo.22k.wav
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Conclusions and future works 

 

We presented six models of auditory saliency measures and observed that they were never 

compared in any reviewing paper neither in a comparison study. It is thereby difficult to 

predict which of these models will be the more adapted for our own project. 

Moreover, except for one study, they were only validated through laboratory conditions 

(detection tasks, pairwise comparisons, pure tones or isolated environmental sounds). The 

only attempt of an ecological validation was presented in [6] that confirmed that salient 

sounds of traffic transports are more disturbing. The measure referred in this paper was 

limited to subjective ratings of comfort. No voice stimulus was used in this experiment neither 

any measure of mental effort. The other experimentation used to validate auditory saliency 

models were also dedicated to very specific application without any of them being reusable 

for our own project concerning vocal announces.  

We suggest first to develop an experimental protocol adapted to the saliency estimation of 

vocal announces.  

 

 

 We also suggest some improvements of the saliency models. Actually several aspects 

of these models can be modified.  

First of all, a lot of visual saliency measures have been proposed in the last decades (18 

papers just in the 2012 European conference on Computer Vision). The SUN model and the 

Center Surround approach of Itti&Koch was already extended to audio. We assume that other 

methods can be used to analyse an auditory spectrogram. For example, the measures of visual 

saliency from image histograms [17] and spectral residual ([13] implementation in Annex 6) 

have been proved to be extremely efficient in terms of computational costs making them ideal 

for real-time processing.  

A second possibility would be to combine several of the already available auditory saliency 

measures for example mixing results from a statistical approach and a biologically inspired 

method to analyze more acoustic features and enlarge the number of acoustic conditions that 

can be treated efficiently.  

 

 None of the measures described above have been tested on presbycusis participants. It 

would be very interesting for our project to either determine the minimum level of saliency 

to achieve so every announces and alarms will be salient enough to be attractive for all 

listeners or to adjust the saliency measures themselves so they can predict the behaviour of all 

listeners.  

 

 Finally another issue would be to determine how saliency is influenced by the natural 

degradations also modifying the intelligibility of announces like, reverberations, non-

linearities, kind of background noise. Furthermore the link between saliency and intelligibility 

was never studied.  
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Sharpness Index measure: 

 

Measure of Clarity 

Name Audio Sharpness Index 

Model The principle is to measure the sensitivity of the total variation of a 

signal (actually any regularity measure) to the convolution of the 

signal by a white gaussian noise.  

Inputs  Distorted speech 

 

Outputs score 

Example  

Complexity The SI is computed on long frames of signal (1 to several seconds). 

Its complexity is of order N.log2(N), where N is the number of 

samples of the frame 

Although its complexity makes it relevant for real time, the lengths 

of the frames of analysis dedicate it to low-reactivity real-time. 

Applications Originally dedicated to image sharpness evaluation, it could be 

used to measure the clarity of any sound having undergone any 

impairment 

Interests for the  

I’City For All Project 

Low complexity  

Non-intrusive, which avoids synchronization between test and 

reference signals 

Known limits Today not validated as a clarity measure.  

The SI were never applied to sound till now. 
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Known performances and 

conditions of evaluation 

According to preliminary experiments : 

 When speech is corrupted by white noise, the SI has the 
same variations as the STI, but in a different range of SNRs (10 to 
40dB instead of -15 to 15) 

 In the case of reverberation, the SI is a decreasing function 
of the reverberation time in a similar manner as the STI, though 
decreasing faster. 

Possible adaptation for 

presbycusis 

Since the STI is more sensitive to noise and reverberation than the 

STI, it could be relevant as a clarity index for hearing-impaired 

people, whereas its variations according to conjugated noise and 

reverberation seem to make it unrelevant for normal-hearing 

people 

References no 

Related methods Based on [Blanchet2012] 
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PART II 

 

Detailed description  

of objective assessment algorithms and criteria 
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Classical and standardized assessment methods 
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Introduction 
 

The scope of this deliverable is to analyse existing objective measures of quality that 

cover a very large spectrum of applications and identify the ones that can be used reliably in 

the analysis and optimization of I‘CityForAll algorithms. Indeed, the quality measure should 

reflect the improvement of I‘CityForAll algorithms and should cover the different 

degradations for “all” population. 

Speech quality can be observed from different angles. Indeed, many perceptual 

attributes can describe the speech quality as for example the most known: global quality and 

intelligibility. Global quality is a multi-dimensional attribute and can include various types of 

other attributes like “naturalness”, “scratching”, “noisy”, etc… this is why during the 

subjective evaluation of the global quality, a description of the observed attributes must be 

given to the test subject. On the other side, intelligibility of speech can be easily quantified 

by counting the number of phonemes, syllables or words identified by the test subject.  

Global quality Intelligibility 

Multi-dimensional attribute Uni-dimensional attribute 

Highly subjective Easy to quantify 
Percentage of phonemes or words recognition by list 

Cultural dependence Cognitive dependence 

 

In the first section of this part, we highlight the kind of quality we are interested in: global 

quality, intelligibility and comfort… In the second section, we describe the objective measure 

of quality that could be used in I‘CityForAll project for enhancement filter optimization and 

intelligibility measure “for all”. In this part of the report, the objective measure is organized 

in three categories: academic mathematical criteria, standards criteria and their derivatives 

and finally room acoustics criteria as described by the organization chart below. 
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Organization chart 1: objective measure of speech quality 

1. Subjective speech quality measure 
The quality is by definition subjective. It depends on linguistic, cultural and cognitive aspects. 

We describe in this section some subjective tests that quantify the global quality and 

intelligibility. 

Subjective measure of intelligibility 

The test of intelligibility may be carried out with different types of phonetic 

databases: syllables, words or sentences.  These databases should have: 

 Phonetically balanced content to represent the distribution of phonemes 

commonly used in the language under test, 

 The same level of difficulty, 

 A controlled contextual information. 

We describe below 3 types of intelligibility tests: 

- /V-C-V/: The database of this test consists of different nonsense syllables 

presented in the format /V-C-V/, where V and C refer respectively to vowel and 

consonant. One vowel is fixed to the entire database, the most used in the 

language, like /a/ or /e/, and the consonants are chosen to also cover the most 

frequently used in the language. The Consonants are altered and corrupted and 

then presented to a group of listeners for identification. The percentage of 

identification of consonant per list is the intelligibility score [1].  

Global quality Intelligibility 

Academic criteria 

 

 

Standard 

  

  

SNR based 

criteria 

  

  

Al-pole model 

criteria 
  

  

PESQ 

algorithm 
  

  

Standard and 

derivatives 

  

  

Room quality 

criteria 

  

  
Speech-based 

STI 

 

  

  

CSII 

  

  

  

 Useful/det

rimental 
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- DRT: The Diagnostic Rhyme Test is composed of lists of rhyming word couples 

(veal-feel/bean-peen/dense-tense/vast-fast/…) that have the same phonetic 

feature (Voicing, Nasality, Graveness…). This type of list helps to localize the most 

affected feature due to the degradation. The subjects are asked to underline the 

heard word. The percentage of words identification per list yields the intelligibility 

score [2]. 

- HINT: The Hearing In Noise Test is composed of lists of phonetic balanced 

sentences. These sentences are diffused at a specific noise level and the subject is 

asked to repeat what he heard. The percentage of words identification per 

sentence yields the intelligibility score [3]. 

For the purpose of I‘CityForAll project, a modified HINT test was proposed for a better 

intelligibility evaluation depending on noise and reverberation. It was also be motivated by a 

new approach of ecological tests to help the patient “to be aware” of his deficiency. This test 

is described in appendix A.   

Subjective measure of global quality 

The subjective evaluation of global quality of speech is normalized by the I-TUT P.800 

recommendation [4]. This standard is applied to evaluate the transmission quality of speech. 

The databases are composed of phonetically balanced sentences and the test consists in 

asking the subject to assess the quality of these sentences by giving a score of quality 

between 1 and 5, where 1 is bad and 5 is excellent.  

No subjective tests for global quality measure have been planned in I‘CityForAll project 

because we are more concerned with the intelligibility for all than with the global quality.  

Besides, we propose to focus also on the degree of “comfort” of speech because it is 

necessary to improve the intelligibility for elderly without troubling the speech comfort for 

the normal hearing person. However, “speech comfort” as attribute must be defined 

rigorously to avoid bias in subjective evaluation. It is clear that “speech comfort” is related to 

“loudness comfort” and “acoustic comfort” but are there other parameters that contribute 

to “speech comfort” variation?  An investigation should be done to lighten this attribute. 

2. Objective speech quality measure 

It is well known that subjective measures of quality are financially and time consuming. Such 

subjective tests are not planned within the scope of I‘CityForAll. To avoid this constraint, the 

quality will be measured with objective assessment methods.  However, there is a large 
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spectrum of objective measures of speech quality, our goal is to identify the most efficient 

“for all” situations.  

In this section, we firstly discuss some academic objective quality measures that are easy to 

compute. Those measures can be used quickly to evaluate the digital filter for speech 

enhancement. We then describe the standardized objective measures and we focus on its 

derivatives which could be used “for all”. Finally, a complementary objective measure based 

on an acoustics approach is presented as a criterion that can be used to develop a more 

global objective criterion of intelligibility “for all” that covers most of degradations. 

2.1. Academic mathematical criteria of speech quality 

Signal to Noise Ratio and derivatives: the Signal to Noise Ratio (SNR) is the most used 

criterion to measure sound quality not for its accuracy but thanks to its simplicity.  The 

overall SNR is measured by equation 1. 

𝑺𝑵𝑹 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 (
∑ 𝒙𝒏

𝟐𝑵
𝒏=𝟏

∑ (𝒙𝒏 − �̂�𝒏)𝟐𝑵
𝒏=𝟏

)           (𝟏) 

Where 𝒙𝒏 is the clean signal, 𝒙𝒏 the noisy signal and 𝑁 the length of the signals (in samples). 

A derived measure from the SNR is the segmental SNR (SNRseg) which corresponds to the 

geometric mean of the SNR of each frame of the signal. The SNRseg is defined in equation 2. 

In practice, the SNRseg can get large negative values due to the silent frames. To resolve 

this, the log function is shifted by 1 to make the SNRseg positive.  

 

𝑺𝑵𝑹𝒔𝒆𝒈𝑹 =
𝟏𝟎

𝑴
∑ 𝐥𝐨𝐠𝟏𝟎 (𝟏 +

∑ 𝒙𝒏
𝟐𝑵𝒎+𝑵−𝟏

𝒏=𝑵𝒎

∑ (𝒙𝒏 − �̂�𝒏)𝟐𝑵𝒎+𝑵−𝟏
𝒏=𝑵𝒎

)         (𝟐)

𝑴

𝒎=𝟏

 

Where 𝑴 is the number of frames. Note that it is important to align the clean and noisy 

signals on the time axis. 

A SNRseg extension was developed in [5] based on the frequency domain which consists in 

measuring the spectral SNRseg with a weighted filter bank. The fwSNRseg is described by 

equation 3.  

𝒇𝒘𝑺𝑵𝑹𝒔𝒆𝒈 =
𝟏𝟎

𝑴
∑

∑ 𝑾𝒋  𝐥𝐨𝐠𝟏𝟎 [
𝑭𝟐(𝒎, 𝒋)

(𝑭(𝒎, 𝒋) − �̂�(𝒎, 𝒋)𝟐)
⁄ ]𝑲

𝒋=𝟏

∑ 𝑾𝒋
𝑲
𝒋=𝟏

𝑴

𝒎=𝟏

       (𝟑) 
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Where 𝑴 is the number of frames, 𝑲 the number of filters in the filter bank, 𝑾𝒋 the weight 

of the jth frequency band,  𝑭(𝒎, 𝒋) the amplitude of the jth frequency band of clean signal, 

�̂�(𝒎, 𝒋) the amplitude of jth frequency band of noisy signal. 𝑾𝒋, the frequency weight, can 

be adjusted to have optimal correlation with subjective tests. 

To maximize correlation between subjective and objective measures, Barwell [6] formulates 

differently the fwSNRseg by interchanging the summations between frequency and frame in 

order to compute a linear regression for frequency weights optimization. With this 

formulation we obtain the so called frequency-variant objective measures (equation 4): 

𝒇𝒘𝒗𝒂𝒓 = 𝑾𝟎 + ∑𝑾𝒋  [
𝟏

𝑴
∑ 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 [

𝑭𝟐(𝒎, 𝒋)
(𝑭(𝒎, 𝒋) − �̂�(𝒎, 𝒋)𝟐)

⁄ ]

𝑴

𝒎=𝟏

]

𝑲

𝒋=𝟏

     (𝟒) 

We note that the frequency-variant weighted SNR is very useful as it can be correlated with 

different objective scores of intelligibility or quality by just carrying on a linear regression. 

This can be done for hearing impaired population as well as for normal hearing population.  

Quality measure based on all-pole models: One of speech modelling theories assumes 

that intervals of speech between 15-30 ms can be represented by an all-pole model with low 

p orders [7] as described by equation 5. 

𝒙𝒏 = ∑(𝒂𝒙(𝒊). 𝒙𝒏−𝒊) + 𝑮𝒙. 𝒆𝒏 

𝒑

𝒊=𝟏

     ( 𝟓) 

Where p is the model’s order,  𝒂𝒙(𝒊) are the coefficients of the all-pole filter, called also LPC 

coefficients, 𝑮𝒙 the filter gain and 𝒆𝒏 white filter excitation. 

Based on this model, several distance measures between clean and noisy speech were 

derived. We describe in the following 3 major objective criteria that use different distances:  

 Log Likelihood Ratio distance (LLR) 

 Itakura Saito distance (IS) 

 Cepstral distance (CEP) 

The LLR is defined as a distance between LPC coefficients of clean and distorted speech. 

𝑑𝐿𝐿𝑅(𝒂𝒙⃗⃗ ⃗⃗ , 𝒂�̂�⃗⃗ ⃗⃗ ) = log
𝒂�̂�⃗⃗ ⃗⃗ . 𝑹𝒙. 𝒂�̂�⃗⃗ ⃗⃗ 

𝑻
 

𝒂𝒙⃗⃗ ⃗⃗ . 𝑹𝒙. 𝒂𝒙⃗⃗ ⃗⃗ 
𝑻
      (6) 



AAL 2011-4-056  D2.2 v 2.00 

 

 
File: d2-2_29-7-2013_report_nm_tb_gm_sl_mj  Page 23 of 84 
 

 

 

Where 𝒂𝒙⃗⃗ ⃗⃗ , 𝒂�̂�⃗⃗ ⃗⃗  are respectively vectors containing the LPC coefficients of clean and distorted 

speech and 𝑹𝒙 the autocorrelation matrix of the clean speech. 

For the Itakura Saito measure, the filter gain 𝐺𝑥 is introduced in the distance expression: 

𝑑𝐼𝑆(𝒂𝒙⃗⃗ ⃗⃗ , 𝒂�̂�⃗⃗ ⃗⃗ ) =  
𝐺𝑥

𝐺�̂�

𝒂�̂�⃗⃗ ⃗⃗ . 𝑹𝒙. 𝒂�̂�⃗⃗ ⃗⃗ 
𝑻
 

𝒂𝒙⃗⃗ ⃗⃗ . 𝑹𝒙. 𝒂𝒙⃗⃗ ⃗⃗ 
𝑻

+ log (
𝐺�̂�

𝐺𝑥
) − 1    (7) 

𝐺𝑥 = (𝑟𝑥
𝑇𝑎𝑥⃗⃗⃗⃗ )1/2    (8) 

Where 𝑟𝑥
𝑇 is the autocorrelation of the clean signal and “.T” refers to vector transposition. 

Note that IS measure gives importance to the overall spectral levels through the filter gain 

which is in contradiction with psychoacoustics studies [8] which state that changes in sound 

level have a minimal effect on quality.  

A derived form of LPC coefficients provides a Cepstrum which is an estimation of smoothed 

speech spectrum as following: 

log (
1

𝑨𝒙 (𝒛)
) = ∑ 𝑐(𝑘). 𝑧−𝑘

∞

𝑘=1

       (9) 

Where 𝑐(𝑘) denotes the Cepstral coefficients. We can obtain the Cepstral coefficients by a 

recursive computing as follows: 

𝑐(𝑘) = 𝑎(𝑘) + ∑
𝑖

𝑘
𝑐(𝑖)𝑎𝑘−𝑖

𝑘−1

𝑖=1

     (10) 

The Cepstral distance is obtained by: 

𝑑𝑐𝑒𝑝(𝑐𝑥,𝑐�̂�) =
10

log𝑒 10
√2∑[𝑐𝑥(𝑖) − 𝑐�̂�(𝑖)]2

𝑝

𝑖=1

         (11) 

Weighted Spectral Slope distance measure (WSS) 

The WSS is a spectral measure based on the distance between spectral slopes. This measure 

is motivated by the influence of formant frequency deviation on quality. 

The spectral slope 𝑆𝑥(𝑘) is measured by the difference between the intensities of successive 

critical bands (𝐶𝑥(𝑘 + 1), 𝐶𝑥(𝑘)) as follows: 
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𝑆𝑥(𝑘) = 𝐶𝑥(𝑘 + 1) − 𝐶𝑥(𝑘)        (12) 

𝑆𝑦(𝑘) = 𝐶𝑦(𝑘 + 1) − 𝐶𝑦(𝑘)        (13) 

The WSS is then measured by weighting the distance between the reference and the 

degraded spectral slopes as:   

𝑑𝑊𝑆𝑆 (𝐶𝑥(𝑘), 𝑆𝑦(𝑘)) = ∑ 𝑊(𝑘). (𝑆𝑥(𝑘) − 𝑆𝑦(𝑘))
2

𝐾

𝑘=1

    (14) 

The weight 𝑊(𝑘) can be adjusted to maximize correlation between the subjective and 

objective quality scores: 

𝑊(𝑘) =
𝐾𝑚𝑎𝑥

[𝐾𝑚𝑎𝑥 + 𝐶𝑚𝑎𝑥 − 𝐶𝑥(𝑘)]
 

𝐾𝑙𝑜𝑐 𝑚𝑎𝑥

[𝐾𝑙𝑜𝑐 𝑚𝑎𝑥 + 𝐶𝑙𝑜𝑐 𝑚𝑎𝑥 − 𝐶𝑥(𝑘)]
     (15) 

Where 𝐾𝑚𝑎𝑥 and 𝐾𝑙𝑜𝑐 𝑚𝑎𝑥 are constants which can be used for correlation with subjective 

measure. 𝐶𝑚𝑎𝑥 is the largest log-spectral magnitude for all bands and 𝐶𝑙𝑜𝑐 𝑚𝑎𝑥 is the largest 

peak nearest band (𝑘). 

In [9], the correlation of all these academic objective measures with subjective global quality 

scores is investigated. The obtained correlation coefficients and standard deviations of 

prediction error are summarized in the table below. 

Table 1 : correlation between objective measures and subjective global quality 

Objective Measures Correlation Coefficients Standard deviations of error 

WSS 0.53 0.52 

LLR 0.63 0.47 

IS 0.45 0.54 

CEP 0.60 0.49 

fwvarSNR (K=25) 0.81 0.36 

fwSNR (k=25) 0.70 0.43 

SegSNR 0.31 0.58 

We note from the results above that it is very interesting to use the frequency-variant 

weighted SNR (fwvarSNR) because on one hand it presents a very good correlation factor 

(0.81) and on the other hand it can be adapted for different subjective measures. 

2.2. Standard objective criteria and derivatives 

We describe in this subsection standardized intrusive measures, which compare clean and 

distorted sentences to compute quality scores. 
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Perceptual Evaluation of Speech Quality (PESQ): Normalized by the ITU-T in the P.862 

recommendation [10], PESQ is a perceptual evaluation based on psychoacoustic models. 

PESQ algorithm is composed by three main modules as illustrated in figure 1: 

 Preprocessing: used to compensate the delay and weakness of the signal introduced 

by network transmission. Besides, PESQ includes an IRS filter (Intermediate 

Reference System) that models the telephone terminal.  

 Perceptual model: converts the original and degraded signals to the frequency 

domain, then in perceptual loudness on Barks scale.  

 Cognitive model: Different distance measures are used between original and 

degraded perceptual representations to compute the quality score. 

Finally, a Mean Opinion Score (MOS) is deduced from the quality score that correlates 

with the subjective score of global quality. 

 

Figure 1 : Descriptive flow chart of PESQ [10] 

For 22 known ITU benchmark experiments, the average correlation with subjective measures 

of global quality was 0.935 [11] for telephony transmission quality as illustrated in figure 2.  
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Figure 2 : Mapping of PESQ listening quality score vs. subjective mean opinion score of British sentences [11] 

Speech Transmission Index (STI): developed by Houtgast and Steeneken [12] and 

normalized by IEC in part 16 of sound system equipment [13], the objective rating of speech 

intelligibility by Speech Transmission Index (STI) is a measure based on Modulation Transfer 

Function (MTF) in reverberant and noisy envirement.  

The MTF can be measured with a speech, Room Impulse Response (RIR) or “modulated 

speech shaped noise”. The direct STI measure takes “modulated speech shaped noise” as 

input. The values of MTF are measured for 14 modulations frequency and 7 octave bands as 

illustrated in figure 3. The indirect STI measure takes RIR as input. The MTF of indirect 

method are measured with Schroeder method [14] derived by the equation 16. 



AAL 2011-4-056  D2.2 v 2.00 

 

 
File: d2-2_29-7-2013_report_nm_tb_gm_sl_mj  Page 27 of 84 
 

 

 

 

Figure 3 : Descriptive scheme of MTF computing with speech shaped noise probe [13] 

 

𝑚𝑘(𝑓𝑚) =
|∫ ℎ𝑘(𝑡)𝑒

−𝑗2𝜋𝑓𝑚𝑡𝑑𝑡
∞

0
|

∫ ℎ𝑘(𝑡)2∞

0
𝑑𝑡

. [1 + 10−𝑆𝑁𝑅/10]
−1

      (16) 

Where  𝑘 is the number of octave band, 𝑓𝑚  the modulation frequency, ℎ𝑘  the impulse 

responses and 𝑆𝑁𝑅 the signal to noise ratio. 
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After MTF computing, the procedure to reach the STI score is the same:  

 Correction of the MTF using auditory masking: the STI 2010 revisions introduce the 

effect of the frequency masking in the MTF computing. This masking is modeled in 

STI algorithm as a noise addition to the octave band k depending on the intensity of 

octave band k-1. 

�́�𝑘,𝑓𝑚 = 𝑚𝑘(𝑓𝑚) ×
𝐼𝑘

𝐼𝑘 + 𝐼𝑎𝑚,𝑘 + 𝐼𝑟𝑡,𝑘
       (17) 

Where, �́�𝑘,𝑓𝑚is the modified MTF taking into account auditory masking, 𝐼𝑘 is the intensity 

level of octave band k, 𝐼𝑎𝑚,𝑘 the intensity of noise addition due to masking effect of octave 

band k and 𝐼𝑟𝑡,𝑘 the equivalent intensity of absolute threshold of octave band k.  

 Computing the effective SNR: the 𝑆𝑁𝑅𝑒𝑓𝑓 𝑘,𝑓𝑚 is SNR that takes into account the 

noise and the reverberation as effective noise. It’s derived from the MTF as follows :  

𝑆𝑁𝑅𝑒𝑓𝑓 𝑘,𝑓𝑚 = 10 × 𝑙𝑜𝑔10(
�́�𝑘,𝑓𝑚

1 − �́�𝑘,𝑓𝑚

)    (18) 

 The transmission index (TI) are than computed from the effective SNR as follows : 

𝑇𝐼𝑘,𝑓𝑚 =
𝑆𝑁𝑅𝑒𝑓𝑓 𝑘,𝑓𝑚+15

30
    (19)  

 The modulation transmission index are derived from the TI as an average over 

modulation frequencies (𝑓𝑚) : 

𝑀𝑇𝐼𝑘 =
1

𝑛
∑ 𝑇𝐼𝑘,𝑓𝑚

𝑛

𝑚=1

       (20) 

Where ′𝑛′ is the number of modulation frequencies. 

 Finally the STI score is computed as follows : 

𝑆𝑇𝐼 = ∑ 𝛼𝑘 × 𝑀𝑇𝐼𝑘 − ∑ 𝛽𝑘 × √𝑀𝑇𝐼𝑘 × 𝑀𝑇𝐼𝑘+1

6

𝑘=1

7

𝑘=1

        (21) 

Where 𝛼𝑘 and 𝛽𝑘 are respectively the weight and redundancy factors for octave band 𝑘 

depending on the gender as detailed in the table below. 
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Table 2 : STI weights per gender 

Octave band (Hz) 125 250 500 1000 2000 4000 8000 

Males  0.085 0.127 0.230 0.233 0.309 0.224 0.173 

 0.085 0.078 0.065 0.011 0.047 0.095 - 

Females  - 0.117 0.223 0.216 0.328 0.250 0.194 

 - 0.099 0.066 0.062 0.025 0.076 - 

The STI predicted score of intelligibility has a good correlation with subjective C-V-C measure 

as illustrated in figure 4. 

 

Figure 4: Relation between STI and CVC-word scores for 78 conditions involving MALE speech. The standard 
deviation, representing the vertical spread around the 3

rd
 order polynomial best-fitting is s = 4.7% [15]. 

Speech based STI: 

During the development of STI, Houtgast and Steeneken tried to use speech as input for 

computing MTF. They observe artefacts when measuring the envelope spectra of degraded 

speech [12, 16]. This artefact consists of increases in intensity envelope spectra when theory 

predicts decreases. This introduces bias in the calculation of the MTF.  

The first work of Houtgast et al. proposes to compute the MTF of speech based STI as follow: 

𝑚𝑘(𝑓𝑚) = 𝛼√
𝑆𝑦𝑦(𝑓𝑚)

𝑆𝑥𝑥(𝑓𝑚)
       (22) 
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Where 𝛼 = 𝐸{𝑥(𝑡)}/𝐸{𝑦(𝑡)}.  𝑆𝑦𝑦 and 𝑆𝑥𝑥 are respectively power spectra of degraded and 

clean speech. To obtain the STI score we follow the same method as for STI direct measure. 

To avoid artefacts, other methods can be used to calculate the MTF or the effective SNR 

directly. We can find a good resume of these methods in Ray L. Goldsworthy works [17]. In 

all those different methods, we are interested by Envelope Regression method (ER) 

proposed by Ludvigsen et al. in 1990 [18] and modified by Goldsworthy in 2004[17]. The 

method was tested by Payton and Mona in 2008 [19] in real time conditions with noise and 

reverberation degradation.  

The ER method consists in computing the MTF as follows : 

𝑚𝑘 =
𝜇𝑥𝑘

𝜇𝑦𝑘

𝐸{(𝑥𝑘(𝑡) − 𝜇𝑥𝑘)(𝑦𝑘(𝑡) − 𝜇𝑦𝑘)}

𝐸{(𝑥𝑘(𝑡) − 𝜇𝑥𝑘)2}
      (23) 

Where 𝜇𝑥𝑘 and 𝜇𝑦𝑘 are the mean of 𝑥𝑘(𝑡) and 𝑦𝑘(𝑡) which are the temporal envelopes of 

speech filtered by kth octave band filter. 

We observe in figure 5 and 6 that the evolution of speech based STI with ER method 

converge to the theoretical STI when the frame size is greater than 0.3 second. In fact, we 

can obtain, in case of only noise degraded speech, a coefficient of correlation between 0.91 

and 0.99 for frame size between 78ms and 0.3s.  

However, when adding reverberation, the 78ms frame size becomes not valid and we need 

frame sizes greater than 0.3s to obtain at minimum a coefficient of correlation 0.79. 

 

Figure 5 : metric results vs. Window length (top) theoretical STI (bottom) ER method for 0 dB SNR stationary 
speech-shaped noise condition. The black dotted line in each plot represents the long-term STI [19] 
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Figure 6 : Metric computed from ER with noise in left column and ER with noise+reverberation vs. 
Theoretical STI using 0.3 s windows in top and 78ms windows in bottom. The solid lines represent best linear 

fits to the data. [19] 

This method is very interesting for the I‘CityForAll project because firstly, speech-based STI 

can be used frequently in a public address system like a railway station, instead of the direct 

STI method that use a speech shaped noise to compute STI and thus needs for this an empty 

railway station. Secondly, the real time processing is very useful for a mobile application that 

computes the STI in different point of a public space. Finally, to adapt the STI “for all”, it’s 

more relevant to use real speech as probe than a synthetic signal because we can include 

psychoacoustic models in STI computing.  

Speech Intelligibility Index (SII) and Coherence measure of SII (CSII): 

SII, ANSI standard [20] (ANSI S3.5-1997), assumes that the speech and noise spectra have 

been measured separately. As for the frequency weighted SNR, the SNR is calculated in SII 

standard for each 1/3 octave, octave or critical bands as follow: 

𝑆𝑁𝑅(𝑗) =
∑ 𝑊𝑗(𝑘)𝑃(𝑘)𝐾

𝑘=0

∑ 𝑊𝑗(𝑘)𝑁(𝑘)𝐾
𝑘=0

      (24) 

Where 𝑃(𝑘) and 𝑁(𝑘) are respectively the power spectrum of speech and noise. The 𝑊𝑗(𝑘) 

is computed as follow:  



AAL 2011-4-056  D2.2 v 2.00 

 

 
File: d2-2_29-7-2013_report_nm_tb_gm_sl_mj  Page 32 of 84 
 

 

 

𝑊𝑗(𝑘) = (1 + 𝑝𝑗𝑔) exp(−𝑝𝑗𝑔)      (25) 

𝑝𝑗 =
4(1000𝑞𝑗)

𝑏𝑗
      (26) 

𝑔 = |1 − 𝑓/𝑞𝑗|      (27) 

Where 𝑞𝑗 the center frequency of band in kHz and 𝑏𝑗 is the bandwidth of jth band. 

We note that SII does not take into consideration the distortion introduced by the 

communication system. Indeed, to compute intelligibility score we just need ambient noise 

power. This can constitute a problem for I‘CityForAll enhancement algorithms as it can 

introduce non-linear distortion to enhanced speech. Kates and Arehart [21] extend SII 

criteria to include non-linear distortion introduced by hearing aids. They propose to compute 

the Signal-to-noise and Distortion Ratio (SDR) instead of the classic SNR. For this, they 

predict the speech and noise (ambient noise + distortion) power spectrums by the 

Magnitude Squared Coherence function (MSC) as follow: 

�̂�(𝑘) = |𝛾(𝑘)|2𝑆𝑦𝑦(𝑘)      (28) 

�̂�(𝑘) = [1 − |𝛾(𝑘)|2]𝑆𝑦𝑦(𝑘)     (29) 

Where �̂�(𝑘) and �̂�(𝑘)  are the predicted speech and noise power spectra. |𝛾(𝑘)|2 is the 

MSC and typically estimated using Fourier Transform in each frame. The MSC is given by: 

|𝛾(𝑘)|2 =
|∑ 𝑋𝑚(𝑘)𝑌𝑚

∗ (𝑘)𝑀−1
𝑚=0 |2

∑ |𝑋𝑚(𝑘)|2𝑀−1
𝑚=0 ∑ |𝑌𝑚(𝑘)|2𝑀−1

𝑚=0

       (30) 

Where 𝑋𝑚(𝑘) and 𝑌𝑚(𝑘) are the spectra of mth window of x(n) and y(n) the clean and 

degraded signal. Then, the SDR is given bys: 

𝑆𝐷𝑅(𝑗) =
∑ 𝑊𝑗(𝑘)�̂�(𝑘)𝐾

𝑘=0

∑ 𝑊𝑗(𝑘)�̂�(𝑘)𝐾
𝑘=0

            (31) 

Note that if only additive noise is present in the communication system, SDR should give the 

same result as SNR (figure 7), otherwise in presence of distortion like clipping, the SDR 

decreases due to MSC reduction. 
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Figure 7 : SDR (solid line), SNR(dashed) and difference between them (dot-dashed) as a function of the 
frequency band number for the concatenated HINT sentences. Additive noise low-pass filtered at 900 Hz is 

present at an SNR of 10 dB [21]. 

However additive noise and distortion do not affect the speech signal in the same way. Kates 

[21] proposes to segment the speech signal envelope into three amplitude regions by 

computing the RMS level of each frame. The middle zone is between [10,30] dB, high zone 

upper 30 dB and low zone inferior to 10 dB. We obtain then, CSIIlow, CSIIMid and CSIIHigh. In 

fact, the high-level segments will be most strongly affected by peak clipping, while the low-

level segments will be affected by additive noise and center clipping [21]. Besides, the 

correlation between CSIIlow and overall CSII is only 0.70 indicating that the low-level CSII 

provides information that is absent in overall CSII. Finally, with the help of non-linear 

minimization procedure we combine the three levels of CSII to obtain an intelligibility score 

(named I3) as follow: 

𝑐 = −3.47 + 1.84𝐶𝑆𝐼𝐼𝑙𝑜𝑤 + 9.99𝐶𝑆𝐼𝐼𝑀𝑖𝑑 + 0.0𝐶𝑆𝐼𝐼𝐻𝑖𝑔ℎ      (32) 

𝐼3 =
1

1 + 𝑒−𝑐
           (33) 

I3 model is shown in figure 8 and it predicts intelligibility with correlation coefficient of 0.94. 
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Figure 8 : proportion of the HINT sentences indentified correctly plotted versus the three-level CSII 
intelligibility predictions I3 for the normal-hearing subjects [21]. 

We note that for SII and CSII measure for hearing-impaired person, Kates and ANSI standard 

consider the hearing loss as an internal noise source [21,20]. A frequency dependent SNR 

will be added to SII SNR or SDR CSII to simulate hearing-loss.  

In addition to the STI, the criterion described previously does not take into account room 

reverberation. However, public space consideration in I‘CityForAll project are often a very 

large rooms. The temporal distortions (reverberation, echo, and crosstalk) that occur in 

those places are very important and can’t be neglected.  We will describe in the next 

paragraph some criteria that take into consideration the acoustics features of large rooms to 

compute speech quality. 

2.3. Room acoustics criterion 

Those criteria are based on the separation of received energy signal on two parts: 

 Useful energy: this part of signal is associated with the direct received sound with the 

first replicated part of signal.  

 Delayed energy: this part of signal is associated with the late replicated part of signal, 

plus background noise arriving to the receiver. 
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Measure of speech intelligibility from Useful/Delayed energy: 

Early/late sound ratio have relates to the degree of clarity for music and intelligibility for 

speech. Lochner and Burger [22] introduce the clarity measure and it’s given by equation 

below: 

𝐶𝑡𝑒 = 10 log (∫ ℎ2(𝑡)𝑑𝑡
𝑡𝑒

0

∫ ℎ2(𝑡)𝑑𝑡
∞

𝑡𝑒

⁄ )        (34) 

Where ‘𝑡𝑒’ is the time limit between late sound arriving and early time arriving,ℎ(𝑡) is the 

room impulse response. 

Bradley [23] develops after the concept of useful and detrimental sound energy that was 

used to predict speech intelligibility score. The useful-to-detrimental ratio is expressed as 

follow: 

𝑈𝑡𝑒 = 10 𝑙𝑜𝑔 [
𝑅𝑡𝑒

(1 − 𝑅𝑡𝑒) + 10(−𝑆 𝑁⁄ ) 10⁄
]          (35) 

Where 𝑆 𝑁⁄  is the signal to noise ratio and 𝑅𝑡𝑒 is the ratio between early and total energy: 

𝑅𝑡𝑒 = 𝐸𝑒/(𝐸𝑒 + 𝐸𝑙). 

Bradley use a 𝑡𝑒=80ms to predict speech intelligibility with 7.5% standard error using 1Khz 

octave band. The best-fit curve for predicting speech intelligibility is given by the third-order 

polynomial equation (36) and illustrated in figure 9.  

𝑆𝐼 = 95.65 + 1.219 𝑈80 − 0.02466 𝑈80
2 + 0.00295 𝑈80

3      (36) 

 

Figure 9 : measured speech intelligibility scores versus 1Khz U80 values and 3
rd

 order polynomial best fit [23] 
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Other methods used the concept of useful/detrimental sound energy [24,25] to compute the 

intelligibility score but we are going to focus in Faiget and Ruiz model [26] that includes a 

separation of room, loudspeaker and noise influence.  

Measure of speech intelligibility including room, loudspeaker and background 

noise influence: 

As for Clarity measure, the prediction of speech intelligibility comes from Room Impulse 

Response (RIR) measure. The idea of Faiget and Ruiz model [26] is to compute a 

deconvolution of RIR to extract room and loudspeaker effects separately. Take the following 

formulation of RIR: 

ℎ(𝑡) = ℎℎ𝑝(𝑡) ∗ ℎ𝑠(𝑡) + 𝑛(𝑡)       (37) 

Where, ℎℎ𝑝(𝑡) is the impulse response of loudspeaker, ℎ𝑠(𝑡) is the impulse response of the 

room and 𝑛(𝑡) is the noises. If we de-noise the RIR response, we can find the inverse filter 

𝑓(𝑡) which verifies 𝑓(𝑡) ∗ ℎ(𝑡) = ℎ𝑠(𝑡). We measure ℎℎ𝑝(𝑡) in anechoic chamber and we 

deduce the 𝑓(𝑡) as the inverse of the loudspeaker IR. Finally, via the Fourier Transform we 

can found ℎ𝑠(𝑡). 

Than the useful/detrimental energies is measure for room and loudspeaker. We compute 

the ratio for room as follow: 

𝐷50
𝑠 =

∫ ℎ𝑠
2(𝑡)𝑑𝑡

50

0

∫ ℎ𝑠
2(𝑡)𝑑𝑡

𝑇

0

      (38) 

Where T is the total time of ℎ(𝑡) and 𝐷50
𝑠  is the influence of the room. 

The influence of the loudspeaker is measured as follow: 

𝑅𝑑𝑖𝑟 =
𝐷50

𝐷50
𝑠 =

∫ ℎ2(𝑡)𝑑𝑡 ∫ ℎ𝑠
2(𝑡)𝑑𝑡

𝑇

0

50

0

∫ ℎ2(𝑡)𝑑𝑡
𝑇

0
∫ ℎ𝑠

2(𝑡)𝑑𝑡
50

0

        (39) 

Besides of loudspeaker IR influence, the distortion in frequency response between 100hz 

and 4khz are taken into account. In fact, the tolerance in deviation is fixed at ∓1.5 𝑑𝐵 to be 

more restrictive. The criteria which take into account frequency fluctuation is computed as 

follows: 

𝑅𝑟𝑓 =
𝐸ℎ𝑝 − 𝐸𝑛,ℎ𝑝

𝐸ℎ𝑝
= 1 −

𝐸𝑛,ℎ𝑝

𝐸ℎ𝑝
       (40) 
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Where, 𝐸ℎ𝑝 is the energy of the frequency response in the band 100-4000 hz and 𝐸𝑛,ℎ𝑝 is the 

energy above and under the tolerance ∓1.5 𝑑𝐵 as illustrated in figure 10. 

 

Figure 10 : simulation of a loudspeaker frequency response with upper and lower Rrf limits [26]. 

The final model is given by the equivalent signal-to-noise ratio as follow: 

(𝑆/𝑁)𝑒𝑞 = 10𝑙𝑜𝑔 (
𝐷50

𝑠 + 𝑅𝑑𝑖𝑟 + 𝑅𝑟𝑓

(1 − 𝐷50
𝑠

) + 10(−𝑆 𝑁⁄ ) 10⁄
)      (40) 

To resume, we need loudspeaker IR measure in anechoic room, RIR and Signal to Noise Ratio 

to compute the finally equivalent (S/N)eq as illustrate in figure 11. 
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Figure 11 : Method of (S/N)eq computation [26] 

We obtain a correlation coefficient of 0.96 and a standard variation equal to 6.2% with 61 

intelligibility measure score as illustrated in figure 12. The regression line is obtained 

according to the equation (41).  

𝐼(%) = 100(1 − 10−[(𝑆/𝑁)𝑒𝑞+40]/(60×0.18))2203          (41)  



AAL 2011-4-056  D2.2 v 2.00 

 

 
File: d2-2_29-7-2013_report_nm_tb_gm_sl_mj  Page 39 of 84 
 

 

 

 

Figure 12 : measured speech intelligibility scores versus (S/N)eq predictor corresponding values and best 
least-squares fit [26]  

This type of objective intelligibility measure is useful for I‘CityForAll project view we work on 

loudspeakers enhancement will be needed to separate the effect of the loudspeaker with 

the room. Besides, it’s important to combine different type of criteria that can be 

complementary to cover all the possible effect of degradation in the communication system.  
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Conclusion 
 

 The aim of the task 2.3 of I‘CityForAll project is to provide firstly a means of 

optimizing and testing digital filters that are used to enhance sound for normal hearing 

persons and  impaired hearing persons. We focused in this deliverable in the existing 

objective criteria of quality that can help to evaluate and improve quality “for all”. 

 In the first part we focused on academic criteria that can be used quickly to optimize 

digital filters. We recommend using the so called frequency-variant weighted SNR that can 

be used to test digital filter for different kinds of quality, global quality or intelligibility, and 

for different population, normal hearing or impaired hearing. 

 In the second part of objective quality criteria, we focused on the standardized 

quality criteria that are accepted in the community. In fact, we are more interested by the 

derivatives of these standards like Speech Based STI and the Three Level Coherence SII. The 

Speech Based STI is the best suited to be adapted for real time computing and hearing 

impaired persons. Besides CSII can be used to take into consideration the nonlinear 

distortion added by the enhancement algorithm developed in this project.  

 Finally, we extend our investigation to the room acoustics criteria that is based on 

Early/Late received sound energy. We found that we can predict accurately the intelligibility 

using the RIR function. Indeed, we are interested in the separation of room and loudspeaker 

effects on intelligibility with help of equivalent signal to noise ratio (𝑆/𝑁)𝑒𝑞 that predicts 

intelligibility with 0.96 correlation coefficient. 

 In addition, we propose to provide in the next deliverable a new global criterion that 

can predict intelligibility “for all” and takes into consideration the degradation of I‘CityForAll 

algorithm, loudspeaker, room reverberation and background noise. This objective measure 

can be an improvement of standardized criteria plus a combination with room acoustics 

criteria.   
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APPENDIX 1: ITTI AND KOCH VISUAL SALIENCY MODEL 

 

One of the first method have been proposed by Itti and colleagues in 1998 [14]. This 

biologically-based model mimics the cortex behavior to analyse the picture through a set of 

three visual attributes: intensity (also called luminance), orientation and color.  

 

Indeed, previous studies on visual perception had demonstrated that some stimuli will 

automatically and involuntarily attract our attention in a given context. For example, a red 

dinner jacket among black tuxedos in an official dinner will pop-out of the visual scene. 

During the last three decades, several studies have determined the different pre-attentive 

visual features that are responsible for this saliency effect (see [26] for a review). For 

instance, shape, luminance, color, orientation are some of these basic visual parameters and, 

as presented in Figure 13, a square among circles, a big circle among small ones or a vertical 

object among horizontal ones are all very salient objects. The Feature Integration Theory 

presented in [24] argues that all these basic features come before perception (early features), 

and are registered automatically in parallel across the visual fields. The main idea of 

computational modeling of visual saliency is to mimic this parallel processing by analyzing 

the visual scene in different feature dimensions. 

 

 

   

Color Shape Size 

Figure 13 Examples of pre-attentive visual features~: distinct objects automatically attract attention. 
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In the Itti and Koch model, the features are extracted in parallel at various scales.  

The different scales are obtained through a dyadic gaussian pyramid (lowpass filtering and 

subsampling, see Figure 14) ranging from scale 0 (original image $P_0$, high resolution) to 8 

(low resolution). The layer $P_(i+1)$ in the Gaussian pyramid is obtained by:  

1. convolving layer $P_i$ by a gaussian kernel like 



1

16

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1























, 

2. then subsampling it by a factor of 2. 

 

 The different scales are then compared using a center-surround mechanism to obtain 

six maps for each parameter. The "center" is a pixel at scale c {2,3,4} while the "surround" 

is the same pixel at a coarser scale s = c  ,  {3,4}. This multi-resolution process is very 

close to Difference of Gaussian used to detect edges in a picture [18]. For example, if I() is 

the intensity of the picture at scale , then the six intensity maps I(c,s) are computed through 

the Equation 1: 



I(c,s)  I(c) I(s)  Equation 1 

 

The six maps of a same feature are then average to form a feature map, for example for 

intensity: 



I 
1

6
I(c,s)

c,s

  

 Then the three feature maps (



I  for intensity, 



C  for color, and 



O  for orientation) are 

normalized to promote maps with a small number of strong peaks while globally suppressing 

maps with numerous comparable peaks. The local maxima of the map are compared to the 

global maximum of the same map. When the difference is large the map is strongly promoted, 

when the difference is small, the map contains nothing unique and is suppressed. For 

example, in figure Figure 15, the only interesting feature is orientation as all objects of the 

stimulus image have the same intensity. The normalization process therefore reduces the 

impact of the intensity map.  
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Scale 2 

 

Scale 1 

 

Scale 0 

Figure 14. Pyramidal representation. Each pixel from a layer of the pyramid is generated from pixels of 

the previous layer through lowpass filtering. The filtered picture is then subsampled by a factor of 2. The 

base of the pyramid (scale 0) is the original image. 

 

Mathematically, each original feature map 



M i  is scaled by a factor Di to obtain the 

normalized feature map Mi
*
 (Equation 2). The factor Di corresponds to the local vs global 

maxima comparison (Equation 3). 

 



Mi

*  Mi  Di Equation 2 



Di  (Gi  Li)
2 

Equation 3 

 
with Gi= Global peak of map i 

and Li= Local peaks of map i 
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Figure 15. The normalization process applied to intensity and orientation maps in the case where the 

salient object is distinguished by its orientation only. From [14]. 

 At the end, the normalized feature maps are combined in a two-dimensional saliency 

map corresponding to the salient points of the image. An example is presented in Figure 16. 

This model has been extended in auditory saliency models (see section 0). 

 

Figure 16. Example of saliency map and feature maps extracted from a photograph. From [14]. 
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APPENDIX 2: MODEL OF AUDITORY SALIENCY BASED ON 

THE ITTI & KOCH MODEL 
Since several saliency model have been developped for vision, an easy way to define auditory 

saliency model is to extend visual models to audio.  

 Three auditory models have been proposed that extend the visual saliency model of 

Itti & Koch [14] to the auditory model [16], [15], [7]. Basically the key idea is to obtain a 

visual saliency map from an "auditory image", i.e. a visual, spectro-temporal, representation 

of the sound (a spectrogram in [16], an auditory spectrogram or cochleogram in [15] and [7]) 

 

 The first auditory saliency model was proposed in 2005 by [16]. It is very closed to the 

visual saliency model of Itti & Koch and relies on a very similar structure with : first, a 

parallel extraction of different features at different scales, then a center-surround 

differentiation substracting the coarser to the finer scale to obtain different feature maps, and 

finally a normalization and a linear combination of these feature maps to obtain the final 

saliency map.  

The only differences between those two models are the feature detectors and the 

normalization: 

 features extracted in the visual models are those extracted by the visual cortex like 

luminance contrast, orientation or color. The auditory features used in auditory scene 

perception to distinguish the different sources are related to spectral or temporal modulations. 

However, although visual and auditory features differ in their interpretation, mathematically 

they are very similar: the filters used to extract frequency or temporal contrast in audio can be 

interpreted as detectors for horizontal and vertical orientations in vision and the filters used to 

extract sound intensity are identical to those extracting luminance. 

 while the visual saliency model is applied on still images, the auditory saliency model 

incorporates a temporal component. The normalization procedure (used to promote feature 

with few but highly conspicuous peaks) is therefore adapted so that causality restrictions 

imposed by the temporal domain are incorporated in a sliding window normalization. Based 

on known properties of forward and backward masking, the sliding window used to compute 

local and global maxima for the normalization is asymmetric, extending 225 msec into the 

past and 75 msec into the future.  

 

 Kalinli et al. [15] based their model on the same structure (see Figure 17) but suggested 

to add two more auditory features (pitch and orientation). Furthermore the spectrogramm used 

in this model mimics the early auditory processing, so is slightly different from the original 

spectrogram used in Kayser's model. 
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While Duangudom argue that different features are employed in her model, these features are 

still related to intensity or frequency and temporal modulations. The main improvement of 

this model compared to Kalinli and Kayser models is therefore the use of a pre-processing 

stage that consists in applying a weighting frequency filters before computing the auditory 

spectrogram to reinforce the contribution of key dimensions: present frequencies within the 

sound and loudness  [7].  

 

 

Figure 17. Auditory saliency map structure of [15] adapted from [16]. 

 

An implementation of the Kayser model is temporarily available online at the address:  
http://transfert.u-psud.fr/download.php?file=35ImplementationKayser_forICityForAllReport.zip

http://transfert.u-psud.fr/download.php?file=35ImplementationKayser_forICityForAllReport.zip
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APPENDIX 3: NATURAL STATISTICS FOR VISUAL AND 

AUDITORY SALIENCY MEASURES 

 

Contrarily to the center-surround mode, the Saliency Using Natural statistics mode [27] 

requires a comparison with other images. The salience at any point of the picture is still based 

on the rarity of the feature responses at that point but rarity is computed on statistics, not only 

depending on statistics of the particular image being viewed (difference with neighbors), but 

also derived from natural image statistics obtained in advance from a large collection of 

natural images. The SUN model uses only one single feature map, learned using Independent 

Components Analysis (ICA) of each natural images of the database.   

 

 This model has been extended in an Auditory Salience Using Natural statistics model 

(ASUN). This extension is based on a learning approach that compares a temporal frame with 

the recent past frames ("local statistics") and with long past frames ("lifetime statistics").  

 The features used to analyze the signal are not defined in advance as in other auditory 

saliency models but are directly computed by the system through a Principal Component 

Analysis (PCA). Three stages, summarized in Figure 18, are necessary to obtain the features. 

As for previous auditory models, the first stage is a conversion from the audio signal to a 

visual, spectro-temporal representation of the sound. The ASUN model relies on a 

cochleogram, close to the auditory spectrogram used in [15] obtained by applying a 64-

channel gammatone filterbank (i.e. decomposition to 64 frequency dimensions). The second 

stage is to split the cochleogram in several patches of width representing 8 ms and height 

representing one frequency band regrouping 7 frequency dimensions from the 64 frequency 

dimensions of the cochleogram (overlap of 8 samples and 4 frequency dimensions). The third 

stage consists of calculating the two or three first components through a PCA for each patch. 
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Figure 18. Schematics for the feature extraction procedure in the ASUN model. Input signals are first 

converted to smoothed cochleagram which is then separated into 20 bands of 8 ms patches. The number of 

dimensions of each band is reduced through PCA. From [25]. 

 

If Ft is the vector representing the features responses of the signal at time t, the saliency s(t) at 

t can be define as the rarity in relation to the recent past (from the input signal) as well as to 

the long-term past beyound a delay k as in equation Equation 4 also equivalent to Equation 5 

under the assuption of independance between local and lifetime statistics.  
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)1(

 

)()1( 





pastlong

kt

pastrecent

ktttt FFFfFPts 
 Equation 4 

 



S(t)   log P(Ft  f t | F( t1),K ,F(tk ))

 log P(Ft  f t | F(tk1),K )

 slocal(t)  slifetime(t)
 

Equation 5 
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The probability of feature occurence P(F = ft) is computed based on prior experience. The 

lifetime statistics are computed through Independant Component Analysis on 1200 seconds of 

sound samples randomly chosen from a large database including environmental sounds 

(animal, urban...) and speech sounds. The local statistics was estimated using the same 

method considering at each time step t the probability distribution of the input signal from t-k 

to t-1. Unfortunately, due to computational limits, the local statistics are only computed with 

discontinuity every k=250 msec.  
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APPENDIX 4:  DISCRETE ENERGY SEPARATION 

ALGORITHM   
 

Unlike previous methods inspired from the center-surround and SUN visual models, the 

Discrete Energy Separation Algorithm (DESA) is  not based on the computation of a visual 

saliency map from a visual representation of the sound. It considers only the temporal 

modulations of amplitude and frequency in multiple frequency bands.  Developped by 

Evangelopoulos and colleagues, it is employed for different applications like video 

summarization (detection of salient event in the movie) [10] and speech detection in noise [9]. 

According to [5], DESA is a very popular measure as it is very easy to compute.  

 

 For each temporal frame m (40~ms), the input signal s is separated in several frequency 

bands through Gabor filters (6 bands centered on 281, 562, 1125, 2250, 4500, and 9000 Hz). 

Then, for each frequency band and every sample k of the frame, the Teager-Kaiser energy is 

obtained with the Equation 6. 



[s[k]] s2[k] s[k 1]s[k 1]  Equation 6 

 

 The frequency band that maximizes the Teager-Kaiser energy for this sample k is 

selected before computing two other measures on this frequency band : the instant amplitude 

(Equation 7) and the instant frequency (Equation 8). 

 



a(s[k])  2
(s[k])

(Ý s [k])
 

Equation 7 

 



f (s[k]) 
1

2
arcsin

(Ý s [k])

4(s[k])









 

Equation 8 
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with 



Ý s  the derivative of the signal s. 

 

 Each feature (Teager-Kaiser energy, instant amplitude and instant frequency) is then 

averaged over all the audio samples of the frame, so three global features are obtained for 

each frame : the Mean Teager Energy (MTE), the Mean Instant Amplitude (MIA) and the 

Mean Instant Frequency (MIF). They are normalized independantly to be in the range [0;1] 

and finally combined to compute the auditory saliency value S of the current frame m  with 

the Equation 9. 

 



S(m) 1MTE(m) 2MIA(m) 3MIF(m) 
Equation 9 

 

 The weightings i can be identical or adapted to promote one of the features. If the 

analyzed sound contains great energy variations, one is likely to give a preferential weighting 

to the MTE. On the contrary, if the sound is more based on frequency variations, as in a 

moving police siren presenting Doppler effect, the MIF will be preferred.  

 The complete procedure is summarized in Figure 19. Even if the DESA measure is 

very correlated to human ratings of saliency [5], it is not usable for real time measurement 

since it relies on a comparison between past and future energy.  

 

 

Figure 19. Global procedure of the DESA model. From [5] 
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1.1. Other models 

Saliency is also used in robotics where both visual and auditory saliency maps are associated. 

However, in such cases, the auditory saliency map only corresponds to the position of the 

sound source as in the ICub project [20]. The auditory saliency computation is in that case 

equivalent to sound source separation algorithm. It does not consider complex scenes where 

different sources can be listened in the same time at different saliency levels. 
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APPENDIX 5: EXPERIMENTAL METHODOLOGIES TO EVALUATE 

AUDITORY SALIENCY MODELS 

 

Evaluating the efficiency of an auditory saliency model is much more difficult than the 

evaluation of visual saliency models as no audio equivalent of eye-tracking is available to 

directly track a physical correlate of auditory saliency. To evaluate how well models can 

predict listeners behaviour, saliency values obtained with the models are compared to 

subjective performances or indirect ratings of different more or less adapted tasks. 

1.2. Direct ratings 

A very simple solution to measure how participants will perceive the saliency of different 

sounds is to directly ask them to rate the saliency of these sounds. For example, in [8] 

participants had to listen to two different auditory stimuli (sequential presentation), each 

composed of one auditory scene/background + one specific sound, and then decide which of 

the two stimuli they find more salient in a two alternative forced choice task (2AFC). They 

had also to rate the difference of saliency on a scale from 1 (equal salience) to 7. The same 

procedure was previously employed in [16]. This methodology is problematic as 

experimentators are forced to give a definition of saliency and then to consider that every 

partipant understand the saliency definition in the same way. Alternatively, the question posed 

to participant can be slightly modified to avoid the explanation of the word "saliency". In 

[25], the authors still used a 2AFC paradigm but asked participants to choose "the most 

interesting sound" instead of the most salient one. The problem of a common definition across 

participants persists.  

1.3. Detection tasks 

The auditory saliency map predicts which sounds or features of a complex auditory scene will 

naturally capture our attention and, hence, are more easily detected, even for low signal-to-

noise ratio. By varyating the sound level relatively to the background noise level (naturalistic 

ambiant sound or gaussian noise), it is possible to determine the detection threshold that 

would be highly correlated to the attractiveness of that sound. According to a group meeting 

about auditory saliency [23], this detection task paradigm is the most employed technique to 

evaluate the perceived auditory saliency. This procedure is for example employed in [16]. 

1.4. Dual-task experiments 

A common procedure employed in experimental psychology to measure the cognitive load 

induced by a task is the dual-task paradigm. It consists in having users engaged in two tasks 



AAL 2011-4-056  D2.2 v 2.00 

 

 
File: d2-2_29-7-2013_report_nm_tb_gm_sl_mj  Page 56 of 84 
 

 

 

simultaneously. This method relies on the assumption that we have limiteError! Reference 

source not found.d-capacity resources so, "when a great deal of cognitive capacity is 

consumed by the primary task, less capacity is available to devote to the secondary task" [4]. 

The mental effort measure is therefore obtained by comparing single-task performances to 

dual-task performances. 

 

 The dual-task paradigm is very promising for the I'City For All project for two different 

reasons. The first one is because dual-task experiments are frequently used to measure the 

effect of age or hearing problems on auditory abilities, or more generally to assess cognitive 

load in speech listening. While normal intelligibility test sometimes reveal no difference in 

word recognition performance between normal and hearing-impaired listeners, dual-task 

experiments hightlight that, to achieve the same performances, hearing-impaired listeners just 

allocate more cognitive ressources. This of course lead to a non desired auditory fatigue. A 

review of dual-task experiments for assessing listening effort is available in [12]. Although 

various tasks can be used, the procedure is very similar from a study to another. The primary 

task concerns the listening activity (e.g. speech recognition test in quiet or in different SNR) 

while the secondary task may be in the same modality (auditory memory task/ recall) or in 

another one (reaction to a light probe or to colour change, reaction to a tactile pattern). 

Participants are told to focus on the word recognition task while any additional tasks have to 

be considered secondary. 

 Moreover, dual-task experiment are of main interest to evaluate auditory saliency. As 

perceptual processes driven by saliency do not require attention, they occur very rapidly and 

effortlessly. Therefore the mental effort required to achieve a task should be reduced if salient 

sounds are involved. An attempt to use dual-task paradigm for measuring saliency perception 

was recently presented in [7]. Participants achieved two auditory tasks in parallel. The first 

one, requiring high cognitive processing, consist in counting how many low frequency tones 

(100~Hz) appear in a sequence of 25 tones (100~Hz or 200~Hz). The second task consists in 

detecting the presence of a modulated tone among four tones (present/absent experiment). As 

modulation is one of the main feature of auditory saliency, this second task is supposed to be 

of reduced cognitive load. This main limitation of this study is in the use of non-ecological 

laboratory stimuli (pure or modulated tones) for both tasks. To evaluate the efficiency of the 

auditory saliency models on our applied project of vocal announces, we suggest to define 

more complex tasks using speech stimuli.  

  

 Finally, some variant of dual-task experiment are employed for studying selective 

attention in multi-talker listening. In [19], the authors measure the cortical activity with 
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electrodes to determine which of two simultaneous speakers is actually attented. After a 

calibration step using the TIMIT corpus [11]. the actual experiment is based on a reaction to 

a target call-sign relying on the Coordinate Response Measure (CRM) [1] corpus. The CRM 

corpus contains sentence in the form "ready (call sign) go to (color)(number)".  This form of 

corpus is very similar to corpus formed on matrices, allowing a huge amount of different 

sentences with the same grammar and duration. Participants had to listen to two voices in 

parallel, one male and one female, and report the number and the color associated with the 

target call-sign pronounced by only one voice. 

1.5. Proposition 

We suggest to use a dual-task paradigm mixing the experiment of [19] and the dual-task 

experiment of [7]. The idea is to consider that a salient vocal announce will be distractive for 

a continuous task like reading or speaking. Therefore we propose that the peripheral task 

would correspond to a reaction to target call-sign, very similar to the one used in CRM 

corpus. The call-sign will be a destination and messages will mimics the transport vocal 

announces (e.g. "Train for (Destination), departure at (time) platform (letter)"). In parallel of 

this peripheral task, participants will have to perform a very engaging primary task with an 

attentional cost as high as reading or speaking with someone. This kind of experiment would 

allow us to 1/ use more realistic stimuli than the pure tone signals used by Duangudom 2/ use 

speech as a simulus to evaluate auditory saliency models.  
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APPENDIX 6: SOURCE CODES OF DIFFERENT VISUAL SALIENCY 

MODELS 

Generally the implementations of visual saliency models can be downloaded from the 

authors’ website. A list of saliency methods and associated codes referenced in the state-of-

the-art is published at http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/. 

 

The code of the SUN model from Lingyun Zhang [27] is available under Matlab format 

at http://cseweb.ucsd.edu/~l6zhang/code/imagesaliency.zip. 

 

A fast computation of the SUN model [3] has been implemented and is available at 

http://mplab.ucsd.edu/~nick/NMPT/main.html, as part of the Nick's Machine Perception 

Toolbox (NMPT). Coded in c++ language, it nevertheless requires the OPEN CV library.  

 

The model of Attention based on Information Maximization (AIM model) from [2] is also 

available: http://www.cs.umanitoba.ca/~bruce/datacode.html. 

 

The simple Matlab implementation of the spectral residual approach [13] allows a fast 

computation of a visual saliency map in the spectral domain: 

clear 

clc 

%% Read image from file 

inImg = im2double(rgb2gray(imread('yourImage.jpg'))); 

inImg = imresize(inImg, 64/size(inImg, 2)); 

%% Spectral Residual 

myFFT = fft2(inImg); 

myLogAmplitude = log(abs(myFFT)); 

myPhase = angle(myFFT); 

mySpectralResidual = myLogAmplitude - imfilter(myLogAmplitude,  

http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/
http://cseweb.ucsd.edu/~l6zhang/code/imagesaliency.zip
http://mplab.ucsd.edu/~nick/NMPT/main.html
http://www.cs.umanitoba.ca/~bruce/datacode.html
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... fspecial('average', 3), 'replicate');  % imfilter function is part of 

the image processing toolbox    

saliencyMap = abs(ifft2(exp(mySpectralResidual + i*myPhase))).^2; 

%% After Effect 

saliencyMap = mat2gray(imfilter(saliencyMap, fspecial('gaussian', [10, ... 

10], 2.5))); 

imshow(saliencyMap); 
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Audio Sharpness Index  

 

1. Principle and definition of the Sharpness Index 
 

 A Sharpness Index (SI) was recently proposed in 0 for image processing, providing a 

simple and efficient objective measure of the perceived sharpness of an image, though this 

was not assessed through formal subjective tests. The SI has the advantage of being a non-

intrusive measure, so that it can be used as an optimization criterion in blind 

denoising/debluring algorithms.  

 The principle of the SI is to measure the sensitivity of the total variation of an image 

(actually any regularity measure) to the convolution of the image by a white gaussian noise. 

The sharper is an image, the more sensitive is its total variation.  

 This principle can be applied to sound processing, adapting the formulas of 0 to a one-

dimensionnal signal. We define the SI of a sound u of length N samples as: 



SI(u)   log10(
  TV(u)


) 

where  denotes the complementary error function, TV(u) denotes the total variation of u, 

defined as:  



TV(u)  ( u(n) u(n 1))
n1

N 1

  

and  and 2
 are defined respectively by : 
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where: 

 



u(n)  u(n 1) u(n) ; 
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Ru
(m)  DFT1 DFT(u)

2  (DFT denoting the Discrete Fourier Transform); 

 



t [1,1], 



(t)  t  arcsin t  1 t2 1 
 

2. The SI as clarity measure ?  

 

 We tested the SI on various music and speech signals, impaired by different levels of 

noise, reverberation and low-pass filtering, known to reduce the sound clarity. We will 

present here the results for speech corrupted by noise and reverberation, since these are the 

main distortions to considered in our application. In each case, we will compare the behavior 

of the SI to that of the Speech Transmission Index (STI), which was proved to be well 

correlated with speech intelligibility [23].  

 When speech is corrupted by white noise, as illustrated by Figure 20, the SI has the same 

variations as the STI, but in a different range of SNRs (10 to 40 dB instead of -15 to 15). This 

could be interesting to measure the intelligibility for hearing-impaired people, that may be 

reduced at SNRs greater than 15 dB, where the STI saturates.  

 In the case of reverberation, as illustrated by Figure 21, the SI is a decreasing function of 

the reverberation time T60 in a similar manner as the STI, though decreasing faster. Again, 

this sharper decrease could be an advantage in the case of hearing-impaired people, who are 

more sensitive to the increase of reverberation.  
 

  

 
Figure 20. SI and STI according to the SNR. 
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Figure 21. SI and STI according to the reverberation time T60. 

 

The combined effect of noise and reverberation on the STI and on the SI is shown on Figure 

22 and Figure 23. Note that the T60 range is the same, whereas the SNR range is adapted to 

the sensitivity of each index. 

 
Figure 22. Contour of STI according to T60 and SNR. 
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Figure 23. Contour of SI according to T60 and SNR 

 

 

Conclusions 
 

 Since the STI is known to be well correlated to the intelligibility of speech, the 

contour of SI compared to that of STI shows that the SI is probably not relevant as an 

intelligibility measure, at least for normal-hearing people. However, Figures Figure 20Figure 

21 show that the SI decreases as factors of intelligibility loss increase. Consequently, the SI 

could be a good criterion to maximize in an intelligibility-enhancement algorithm. It has two 

main advantages: 

 

 its computational complexity is low; 

 it does not require the original signal, which avoids the problem of synchronization 

between test and reference signals in classical algorithms. 
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 Scilab source code of the SI function 

 

function SI = SharpnessIndex(s)  

exec("omega.sci");  

exec("TotalVariation.sci");  

N = length(s);  

N_tot = 2^ceil(log2(N))*2;  

TVs = TotalVariation(s);  

ds = [s(2:$) s(1)] - s;  

ds = [ds zeros(1,N_tot-N)];  

ds22 = sum(ds.^2);  

Rds = real(ifft(abs(fft(ds)).^2));  

Rds = max(-ds22,min(ds22,Rds)); // to avoid small    

        exceedings 

E_TV_S = sqrt(2*N*ds22/%pi);  

Var_TV_S = 2*ds22*sum(omega(Rds/ds22))/%pi;  

if SI>15 then  

 v = (E_TV_S-TVs)/sqrt(2*Var_TV_S);  

 SI = v^2/log(10) + log10(v) + 0.5*log10(%pi);  

end  

endfunction  

 

with :  

 

function TV = TotalVariation(x)  

 TV = sum( abs(x(2:$)-x(1:$-1)) );  
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endfunction  

 

function w = omega(x)  

 w = x.*asin(x) + sqrt(1-x.^2) - 1;  

endfunction 
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