
Project ref no AAL-4-032

Project acronym T&Tnet

Project full title
T&Tnet: Travel & Transport solutions through emotional-social

NETworking

Dissemination

level
Restricted Document

Date of delivery 12/3/2014

Deliverable

number
1.4

Deliverable name
Final functional requirements and API Specification for T&Tnet

Services

Type Report (R)

Status Final

WP contributing

to the deliverable
WP1

WP / Task

responsible
TELLU

Other

contributors
ITAINNOVA, GEO, ISOIN

Author(s)

TELLU (Lars Thomas Boye, Knut Eilif Husa)

ITAINNOVA (David Escuin)

GEO (Elena Valari)

ISOIN

Keywords Functional requirements, Architecture, API

Abstract (for

dissemination)

The purpose of this deliverable is to specify the overall T&Tnet

system architecture and functional requirements. The system is

comprised of various sub-systems to be implemented by different

partners, which must be interconnected and work together.

Requirements are specified both with regards to what functionality

the system will provide to end users, and with regards to what

interfaces and functionality the various sub-systems will provide to

users and to the other sub-systems.

T&Tnet: Travel & Transport solutions through emotional-social

NETworking

AAL-4-032

Deliverable

D1.4

Final functional requirements and API Specification for

T&Tnet Services

Restricted Document

© 2012-2014 T&Tnet Consortium

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

3

VERSION HISTORY

Version Edited by Date Description

0.1 Lars Thomas Boye 30.10.2014
First version of D1.4, based on final

version of R1.4.

0.2 GEO team 3.11.2014
Complete Tips and Social API

chapters.

0.3 Lars Thomas Boye 24.11.2014 (Re)written chapters 2, 3, 4 and 6.

0.35 GEO team 24.11.2014 Review chapters 3 and 6.

0.4 David Escuin 26.11.2014 (Re)written chapter 9

0.9 Lars Thomas Boye 03.12.2014
(Re)written chapter 7, intro and

conclusion, reviewed 8-10.

1.0 Lars Thomas Boye 10.12.2014
Review by Victoria Cristancho-

Lacroix and Angeliki Angeletou

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

4

Table of Contents

1 CONTEXT AND BACKGROUND .. 6

1.1 PROJECT OVERVIEW ... 6

1.2 OBJECTIVES OF THE DOCUMENT .. 6

1.3 RELATION TO OTHER DELIVERABLES ... 7

1.4 STRUCTURE OF THE DOCUMENT .. 8

2 SYSTEM OVERVIEW .. 9

2.1 USER ROLES .. 9

2.2 OVERALL ARCHITECTURE ... 9

3 FUNCTIONAL REQUIREMENTS .. 13

3.1 FUNCTION SPECIFICATION .. 13

3.2 FUNCTION PRIORITY ... 17

4 USER PREFERENCES .. 19

4.1 ABOUT USER PREFERENCES .. 19

4.2 PREFERENCE LISTING .. 20

4.3 INTERFACE PREFERENCES ... 21

4.4 TRAVEL PREFERENCES ... 22

4.5 DROPPED OTP PARAMETERS ... 24

5 TIPS .. 26

5.1 USERS PROFILES... 26

5.2 TIPS & SUPPORTED SERVICES ... 27

6 USE CASES WITH SUB-SYSTEM INTERACTION ... 31

6.1 CREATE AND CONFIGURE ACCOUNT ... 31

6.2 PLAN A TRIP .. 33

6.3 REQUEST NAVIGATION .. 35

6.4 TRIP EXECUTION AND FEEDBACK .. 37

6.5 PROVIDE TIPS AND FEEDBACK ... 40

7 SYSTEM ARCHITECTURE .. 43

7.1 ARCHITECTURE DECISIONS ... 43

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

5

7.2 SYSTEM COMPONENTS .. 46

7.3 INTERFACES .. 50

8 SOCIAL API ... 54

8.1 INTRODUCTION ... 54

8.2 GEODATABASE .. 54

8.3 SUPPORTED METHODS ... 58

9 PLANNER API .. 62

9.1 INTRODUCTION ... 62

9.2 ROUTE DATABASE .. 62

9.3 SUPPORTED METHODS .. 64

10 TRACKER API .. 71

10.1 INTRODUCTION ... 71

10.2 ACCOUNT AND AUTHENTICATION .. 71

10.3 URLS AND REQUESTS ... 72

10.4 RESOURCES .. 76

11 CONCLUSION .. 83

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

6

1 Context and background

1.1 Project overview

To sum up the T&Tnet project idea, it is journey planning and navigation for the

elderly, with user interfaces, functionality, content and artificial intelligence specifically for

this user group. It includes multi-modal route calculation in multiple countries, with public

transport data. It includes crowd-sourcing of accessibility tips for locations and of

emotional feedback for transit routes. It includes a web application to plan trips and access

information. And it includes a mobile application giving tracking and navigation.

Compared to general purpose route planners such as what you get with Google

Directions and Maps, our goals are to be more user-friendly, personalised and adaptive, and

to provide accessibility-related content specifically to meet the needs of elderly and others

with reduced mobility. Our system stores user preferences and feedback to be personalised

and adaptive. It also tracks the user when travelling, and can notify a caregiver if a problem

is detected or the user presses an SOS button in the app, if the user wants such features. By

addressing accessibility and safety, we hope to make it possible for more people to travel

freely and without anxiety.

1.2 Objectives of the document

This document is a software architecture description, specifying the sub-systems and

components making up the T&Tnet system and how they are connected. The main

objectives is to specify requirements, both with regards to what functionality the system

will provide to end users, and with regards to what interfaces and functionality the various

sub-systems will provide to users and to the other sub-systems. As the T&Tnet system is

comprised of several sub-systems, developed by different partners in different corners of

Europe, defining the roles of the sub-systems and the interaction between them is essential

for the success of the project.

The initial version of this document, the internal report R1.4, was a result of the

technical analysis, specification and early system design work in the T&Tnet project,

leading to the specification of the first prototype system. The shared data and APIs of the

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

7

system has continued to be refined and extended throughout the project, and we now

present the final version of the functional requirements and APIs, which have been

implemented in the final prototype system.

1.3 Relation to other deliverables

The functional requirements and system design was informed by the User needs

analysis (D1.1), Scenario story boards (D1.2) and User requirements (D1.3). A T&Tnet

services mock up (D2.1) was also documented as part of the early system design work. This

deliverable replaces the internal R1.4, which is the previous iteration of this document.

The T&Tnet prototype system has been implemented according to the requirements

and specifications in this document. The prototype is documented in the deliverables of

Work Package 2:

 D2.2 & D2.3: First & Final travel and transport infrastructure prototype. The

two deliverables together document the route calculation part of the T&Tnet

system. D2.2 describes the concepts of the multimodal transport infrastructure

and its implementation in T&Tnet, and the data collected for each city

involved in the project. D2.3 gives a detailed documentation of the final

version of the Planner API.

 D2.4 & D2.5: First & Final system intelligence prototype. D2.4 documents

the intelligence in the route calculation part of the system. The other content

of D2.4 is replaced by the updated description in D2.5, describing the system

intelligence server and the navigation.

 D2.6 & D2.7: First & Final journey planning and social collaboration

prototype. The final version (D2.7) gives a complete documentation of the

T&Tnet web application, describing the journey planning and social

collaboration functionality. It also gives an overview of the Social API, which

is described in more detail in chapter 8 of this document.

 D2.8 & D2.9: First & Final T&Tnet integrated prototype. The first version

(D2.8) is now outdated, with updated versions of the content distributed

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

8

between this deliverable (API specifications) and D2.9 (Mobile application

and system integration).

1.4 Structure of the document

After a short introduction to the user and system roles, chapter 3 describes the high-

level functional requirements from the end user perspective. We then look at two key forms

of shared data, user preferences and tips, which need clear definitions as they are accessed

and updated by several sub-systems. Chapter 6 describes the flow and interaction involved

in the main use cases. Chapter 7 describes the structure of the system. Chapters 6 and 7

together specify the overall architecture, giving the functional and API requirements for

each sub-system. The rest of the document provides detailed API specifications.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

9

2 System overview

Here we present the main actors of the T&Tnet system – the user roles and system

parts. This gives a first overview of the architecture, elaborated on in the rest of the

document.

2.1 User roles

There is one main type of end user for the T&Tnet system – the elderly person being

assisted in travel. This will be referred to as the primary user. There are also various

secondary and tertiary user roles, although these have not been the main focus in the

project. One secondary user role is that of a caregiver – someone who provides support to

the primary user. This can be a relative, friend or professional caregiver. The primary user

may want to get in contact with a caregiver in case of a significant problem.

One tertiary user role is for entering content from “official” sources. While the

primary idea for getting content such as tips into the system is crowd-sourcing (the primary

user enters tips), other stakeholders such as travel agencies, tourist offices and hotels are

potential sources of accessibility information about locations, and our system includes this

possibility.

In addition, there will be various administrative roles, managing the sub-systems and

their content, but these are not considered here.

2.2 Overall architecture

Figure 1 gives a simplified overview of the T&Tnet system, showing the main sub-

systems. This sub-system division follows from the various types of functionality needed,

how responsibility for implementing this functionality is divided amongst the partners in

the project, and the technology platforms used for the implementations (a more detailed

architecture description is given in chapter 7). A shortened name is given to each sub-

system, to easily refer to them in this document.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

10

A short description of each follows. The main roles listed are based on the functional

parts of the system first outlined in the Description of Work, and which sub-systems

implement these.

Figure 1: System overview

2.2.1 Web

Main roles: Social Collaboration Platform, Journey Planner, User interface

Responsible partner: GEO

Description: This sub-system includes a web application, database and API for access

to the data. The web application is the T&Tnet front end for stationary use (as opposed to

the mobile use of the app). The main functionalities available through the web interface

include account management, journey planner with map, and entering of tips (accessibility-

related location-bound information) and trip feedback. Both T&Tnet user accounts and tips

are stored in this sub-system, and it has an API to retrieve and provide this data. The API is

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

11

referred to as the Social API, since it is part of the Social Collaboration Platform. Route

calculation and storing of route feedback is handled by the Planner sub-system.

2.2.2 Planner

Main roles: Multimodal T&T infrastructure, Social Collaboration Platform

Responsible partner: ITAINNOVA

Description: A back-end sub-system providing the journey planner functionality

accessible through the front-ends (Web and App). The front-ends allow the user to specify

where to travel from and to, a time, and a number of travel preferences, and the Planner

sub-system is responsible for calculating routes to suit the user input. It builds on the

OpenTripPlanner platform, which provides the core planner algorithms for producing

multi-modal routes, and adds a T&Tnet specific layer. The server instance has been set up

with all the necessary map and transit data for the four pilot cities in the project. It is also

responsible for storing routes planned by the user, and for storing feedback from trips.

Feedback will be used to enrich route suggestions with information provided by those who

have used those routes, to help the user select a route that suits their preferences. So it has

an API for retrieval of planned routes and for giving feedback, in addition to requesting

route planning.

2.2.3 App

Main roles: User interface, Navigation

Responsible partner: TELLU

Description: This is the T&Tnet smartphone application, running on the primary

users’ phones. It is the front end for mobile use - in connection with travelling and

executing trips – and provides navigation based on planned routes. When a trip is active it

uses sensors to track progress, both to provide navigation locally and to inform the server

side. Much of the Journey Planner and Social Collaboration functionality is also available

through this interface – getting a route for a specific destination, entering trip feedback and

entering tips. It uses the APIs of all three other sub-systems.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

12

2.2.4 Tracker

Main roles: System Intelligence

Responsible partner: TELLU

Description: This is a back-end, implemented by Tellu’s SmartTracker sensor service

platform. This sub-system provides tracking of users and System Intelligence. T&Tnet

users are represented as tracked entities here, known as assets in SmartTracker. All user

preferences are stored with the asset, allowing the reasoning engine of the platform to

operate on them. It is the central store of sensor data such as positions, and makes it

possible to share position data with a friend or caregiver. All sensor data are processed by a

reasoning engine with configurable rule logic, which can result in actions such as

preference improvements and raising of alarms.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

13

3 Functional requirements

This chapter lists all the end user functionality implemented by the system, and

specifies the sub-systems and prototype iterations for the implementation. This final list

was established based on the results of the prototype iterations. The main difference from

the initial list of functionalities was that friends-related function, aiming the coordinated

use of the system for multiple primary users, such as travelling together and the support

functions needed to connect friends, was removed.

3.1 Function specification

In this section we list the functionalities of the system, from the end user perspective,

at a high level. The functionality is grouped in main categories, designated by letters, with a

numbered list of functions in each category, so that we can refer to functions in this form:

A.1, D.4, etc.

A. Manage user account

The primary user needs to have an account in the system, with authorization data and

preferences. So a new user must be able to create an account, and account details can be

entered and later changed.

A.1. Create user account

An account in the system is created through the web, with an email address and

password for authentication.

A.2. Edit preferences

The system may store a set of preferences for a user account. There are two

categories of preferences, based on where they can be changed and how they are used.

● Interface preferences: These control the appearance and functionality of the

mobile app. They are only edited in the mobile app, as the user should be able to see

the effects of changing the preferences directly.

● Travel preferences: These are preferences related to the modes of travel, such as

preferred transit modes, maximum transfers and walk distance. Some of these are

available in the Journey Planner interface, but default values can be specified as part

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

14

of the user’s preferences, and these default values will be used as pre-filled values

in journey planning, so the user doesn’t need to enter them each time a trip is

planned unless there is a need to deviate from the personal default for a specific trip.

Note that this categorization is made here for technical reasons, but does not

necessarily reflect how preferences is presented to the user (this is part of the user

interaction design).

A.3. Reset password

If a user forgets the password of the account, a new one can be requested. A

generated password is sent to the user’s email, along with a suggestion to change this to a

new personal password.

B. Journey Planner

These are the functionalities producing routes for navigation.

B.1. Browse map

A map is available in both the web and mobile app. In addition to all the generic map

data, T&Tnet-specific tips can be indicated on the map. The user can specify what types of

tips to show (a checklist will be provided with limited categories). Selecting a tip on the

map will show any additional information about that point, such as comments from users.

The user can freely browse the map to learn about areas, as an aid while travelling or to

support trip planning.

B.2. Plan trip

This means to establish a trip plan for a future point in time. This is done through the

web interface. The user specifies start and end points, either by clicking the map or by

entering addresses. A departure or arrival time is specified. Travel preferences such as

preferred transit modes and maximum walk distances can be specified. Travel preferences

may have default values stored in the user preferences, which are used if left unchanged.

The system comes up with route suggestions based on all these parameters. The

suggested routes are drawn on the map, with colours based on previous user feedback for

the legs. The routes are listed, and selecting a route from the list brings up the full schedule

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

15

listing each leg of the route. The user can choose to accept one of the route suggestions, so

that it is stored in the system and transferred to the mobile app.

B.3. Request navigation

This is the mobile app equivalent of the trip planning described in the previous point.

Rather than specifying a starting point and time, the current position and time is used as the

starting point, and the user only specifies where they want to go (point on map). Travel

preferences, with defaults from the user preferences, are available. Route suggestions are

provided and selected between as described above, but accepting a route immediately starts

navigation.

B.4. See planned trips

Trips planned but not yet started can be listed. Selecting one, it can be displayed as

when it was first produced, as lines on the map and listing the schedule of legs.

B.5. Cancel trip

Related to the previous point, a planned trip not yet started can be cancelled,

removing it from the system.

C. Navigation

These are the functionalities guiding the user when travelling. All functions in the

category are restricted to the mobile app.

C.1. Navigation guidance

During a trip, the route and the user’s positions within it can be displayed in several

forms. The primary forms are map visualization and textual instructions. The route is

shown on the map, indicating the separate legs (modes of transportation). The user’s

current position is indicated on the map, and the route indicates what part of it has been

completed. Textual instructions are provided, and the instruction for the current step is

always visible in the app. When walking (or bicycling), detailed step-by-step guidance is

provided by the textual instructions. For transit, the guidance is which bus/tram/etc. to use,

and to which stop. Additional navigation forms are designed and tested if needed and time

permits. Navigation can be stopped at any time, cancelling the rest of the plan.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

16

C.2. Deviation detection

The position of the user is tracked whenever possible during a trip, and if the user is

deviating from the route, either in space or time, this will be detected. There are two

thresholds. Exceeding the first, the user is notified and guided to get back on track. If a

further threshold is exceeded, where the current route is no longer feasible, the user is

notified of this, and given a choice between a recalculated route to the current destination,

or cancelling the navigation. Secondary users such as friends and relatives may be notified

of continuing deviation.

C.3. Error notification

The user is notified during a trip if the navigation functionality is compromised, such

as from network or GPS unavailability. Any possible corrective activity from the user’s part

is described.

C.4. Route recalculation

The route to the current destination is recalculated on a strong deviation, or if starting

it from a different time or place than that planned. The user may also request a recalculation

if they observe that conditions have changed.

C.5. Pause navigation

The user may put the trip on hold, with no navigation or deviation detection until it is

resumed. This can be useful when stationary/waiting, to preserve the battery of the phone or

to extend the stay at a location. On resuming navigation, route recalculation may be

necessary.

D. Social Collaboration

These are the crowdsourcing functionalities, where users provide information about

trip legs and locations.

D.1. Emotional feedback

The user is asked for an emotional response to each leg of a route travelled by public

transport. Seats availability and travel speed has been chosen as the attributes to gather

feedback on. In the mobile app, the user is asked for this feedback after the trip is finished

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

17

or navigation is stopped. If the feedback is not given in the app, the user can give it on the

web. Completed trips with incomplete feedback are listed here, and the user can indicate

any problems or discomfort with the legs.

D.2. Enter tip

A tip is an accessibility-related piece of information about a specific location. Tip

types include the location of escalators, stairs, elevators and toilets. We also support

temporal (time-limited) tips, for when a street or accessibility enabler is blocked, broken

etc. Each tip is associated to an icon. To enter a tip, the icon is selected by pressing/clicking

on it. In the web interface, the location is chosen by clicking the map or writing an address,

while in the mobile app the current position is used. In addition, a comment may be

provided, to describe the accessibility in more detail, or enter complementary information

about the spot. Additional comments can also be provided for existing tips.

E. Communication

Ways for the user to contact others, and for the system to contact users.

E.1. Send alarm

The mobile app includes an alarm button, allowing the user to activate a signal when

he is in trouble and/or needs help. The signal is sent to the Tracker server. Exactly how the

alarm is handled is a system configuration tailored to each user, but it will typically include

secondary user notification.

E.2. Initiate phonecall

The alarm button in the mobile app may also initiate a direct call to one pre-

configured contact, to quickly and easily call for help in an emergency.

E.3. Secondary user notification

People who need not be users of the system in any other respect can be entered as

contact persons (with phone number or email addresses) to a primary user, to receive a

message (by SMS or email) when the primary user is lost or sends an alarm.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

18

3.2 Function priority

The following table lists all the functions specified in the previous section. The

columns for Web and App give the prototype iteration the function was specified for, for

the web and mobile app respectively, showing when and where the functionality has been

implemented.

Code Function Web App Comments

A.1 Create user account 1 -

A.2 Edit preferences 2 1

A.3 Reset password 2 -

B.1 Browse map 1 1

B.2 Plan trip 1 -

B.3 Request navigation - 2

B.4 See planned trips 2 1

B.5 Cancel trip 2 2

C.1 Navigation guidance - 1 Map mode initially, others may be

added later

C.2 Deviation detection - 1 Improved for 2. iteration

C.3 Error notification - 2

C.4 Route recalculation - 2

C.5 Pause navigation - 2 If wanted as part of user interface

D.1 Emotional feedback 2 1

D.2 Enter tip 1 2

E.1 Send alarm - 2

E.2 Initiate phonecall - 2

E.3 Secondary user

notification

- - 2 (SMS/email sent from Tracker

server)

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

19

4 User preferences

In this chapter we discuss and document the user preferences in the T&Tnet system.

This is one of the system aspects which spans all sub-systems and which therefore needs

collaboration between all technical partners, as well as conceptual and user interface input

from HCI partners. On the technical level, we need to coordinate what they are called

internally and which values they are allowed to have between the systems which interact

with them. On the HCI level, we need to specify which preferences will be available to the

user in the various interfaces, and how they are presented there, making sure it is consistent

between the web and mobile app interfaces.

4.1 About user preferences

We have defined two categories of user preferences. One is interface preferences,

regarding how the user interacts with the system. In addition to GUI settings, we have

included the specification of a contact person in this category. The other is travel

preferences, which is directly related to trip parameters. It is important to understand this

relationship. The trip parameters are parameters to guide the calculation of routes for a

trip, such as preferred methods of transport. Some of these parameter values can be

specified by the user while others cannot, because not all makes sense to a user. For

instance, how fast the user walks is something that we want the system to try to learn,

rather than ask the user.

Of those travel preferences the user can edit, some will also be available as trip

parameters in the trip planning interface. The idea is that we store a user preference for

each trip parameter, and if the trip parameter is also available in the planner user interface

the preference value is used as a pre-filled, default value. So the trip parameters are already

filled in based on preferences, but the user may change these parameter values if they wish,

in case they want a different value for a particular trip. Labels of trip parameters should

match labels of the corresponding preferences, as far as possible. So travel preferences and

trip parameters need UI coordination, and both will be available in web and app, which also

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

20

needs coordination. This coordination is both what the preference/parameter is called in

each language, as well as which values the user can choose between.

The travel preferences/parameters presented to the user are directly based on the

parameters of the API call for route planning made to the Planner sub-system, which in turn

is based on OpenTripPlanner. Since these are parameters for a software algorithm, and not

all are understandable or relevant to a non-technical end user, we have limited the selection

of which parameters to include as preferences.

The preferences are stored in SmartTracker (the tracker/intelligence sub-system), as

part of the asset entry which represents the user in this sub-system. From here they can be

accessed and updated by the web and mobile app sub-systems, through SmartTracker’s

REST API.

4.2 Preference listing

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

21

Table 1 gives an overview of the preferences. Code is the internal name – the name

used in the SmartTracker asset entry. UI name is how the preference should be labelled for

the user, or blank for preferences which should not be accessible to the user. This is an

important point to agree on, and implement in the same way in all user interfaces. These are

the English labels; translations in other languages must also be coordinated between web

and mobile app. Value gives the data type used for the SmartTracker storage, as well as

range of valid values (see detailed preference descriptions for more). Default value is what

the preference should be initially, before the user or the system has edited it.

The preferences should also be presented in the same order in each user interface.

Therefore, the order in this list is significant (those not intended for UI are put last and have

no UI name). See the next sections for descriptions of the preferences.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

22

Table 1: User preferences

Code UI name Value Default

Interface preferences

highContrast High contrast Boolean false

contactName Alarm contact name String

contactPhone Alarm contact phone

number

String

Travel preferences

mode Transport modes Selected from list, see

discussion

All except

BICYCLE

maxWalkDistance Maximum walk distance Integer, 500-10000 meters 1000

stairs Can use stairs Boolean true

elevators Can use elevators Boolean true

walkSpeed - Floating-point (0.1 – 5) 1.3

4.3 Interface preferences

Only one of these is really a user interface option, and so far only for the mobile app.

Text size could have been another, except in Android this is a system preference and not

something to control in an app. We include the contact person – who to contact with the

“SOS” function of the app – in this category.

4.3.1 contactName

Description: The name of the person to contact with the “SOS” function of the app.

Value selection: Input box, for text

4.3.2 contactPhone

Description: The phone number to call with the “SOS” function of the app (should

match the name).

Value selection: Input box, limit input to phone number characters if feasible

4.3.3 highContrast

Description: Turn on to use a high-contrast theme in the mobile app.

Value selection: Checkbox

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

23

4.4 Travel preferences

Travel preferences are directly based on the Planner API request. These are taken

from OTPs API documentation
1
, as well as trip parameters added by T&Tnet. We have

selected the parameters which seem relevant to configure with preferences. Those that seem

the most relevant for end user input should be available to the user when planning, as trip

parameters, while the rest should be used directly from preferences. The internal names in

SmartTracker match the OTP parameter names, making it easy to use them directly. Note

that order in this section is alphabetical.

4.4.1 elevators

Description: Whether elevators can be included in calculated routes. This is one of

the new parameters T&Tnet has added to the Planner. Note that it only concerns walk legs

of routes, not general accessibility. Not many places have elevators to include in walk legs,

and it is hard to imagine wanting to rule them out, but perhaps claustrophobia is one use

case. We include it, with true as default value. That it is only for disabling if you really do

not want elevators in walk legs is something which should be made clear in the preference

interface.

Value selection: Checkbox

4.4.2 maxWalkDistance

Description: The maximum distance (in meters) the user is willing to walk. This

parameter is a bit problematic. The planner will not produce routes with longer walk

distance, so a low value may cause no routes due to the morphology of the city and the

maps. Therefore, it needs to have a lower limit on what the user is allowed to specify (500

meters). The parameter value should be higher than the user’s preferred walk distance, so

that routes are produced even if they are suboptimal.

Value selection: Input box, for meters

1

 http://docs.opentripplanner.org/apidoc/0.11.0/resource_Planner.html

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

24

4.4.3 mode

Description: The set of modes that a user is willing to use. This is the most important

travel preference, controlling what types of legs can be produced. The modes are as

follows, with internal values and suggested labels:

Table 2: Travel modes

Value UI name

WALK Walk

BICYCLE Bicycle

TRAM Tram

SUBWAY Subway

RAIL Rail

BUS Bus

FERRY Ferry

Internally it is stored as a comma-separated list of values. OTP also has modes CAR,

CABLE_CAR, GONDOLA and FUNICULAR, but they not are relevant for our trials.

There are also the combo values TRANSIT, TRAINISH and BUSISH, but we will just

include a “Select all” button in the user interface to tick all boxes (maybe except Bicycle).

The default should be all.

Value selection: This should be multi-selection, so that each mode can be toggled

individually.

4.4.4 stairs

Description: Whether stairs can be included in calculated routes. This is one of the

new parameters T&Tnet added to the Planner. Note that it only concerns walk legs of

routes, not general accessibility, something which should be made clear to the user.

Value selection: Checkbox

4.4.5 walkSpeed

Description: User's walking speed in meters/second. Not to be shown to the user. We

have a rule in SmartTracker to modify it based on observed speed.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

25

4.5 Dropped OTP parameters

The following are parameters of the OTP API which were originally included in our

preferences list, but which have been removed because user configuration was unwanted or

unneeded.

4.5.1 bikeSpeed

Description: The user's biking speed in meters/second. This is not a value which the

user can relate to. If it were to be included it should be found by observation as with

walkSpeed, but cycling is not a focus in T&Tnet.

4.5.2 maxTransfers

Description: The maximum number of transfers that a trip will be allowed. OTP

documentation says “one plus the maximum number of boardings”, with a numerical value,

or “Any” to use the server’s own limit. We don’t see much need to enforce a specific limit

– it is usually best to use the default “Any” and get the possible routes to select from.

4.5.3 minTransferTime

Description: The minimum time, in seconds, between successive trips on different

vehicles. This parameter seeks the perfection of the OTP but it is unmanageable in practice.

It is difficult for users to specify, as there are many variables involved, and also difficult to

know without timing many transfers with a stopwatch. So the recommendation from those

who work on the Planner part of the system is to use a fixed value between 60-90 seconds.

4.5.4 optimize

Description: The set of characteristics that the user wants to optimize for. The

following table shows the options given by OTP.

Table 3: OTP optimize values

Value UI name

TRANSFERS Fewest transfers

QUICK Quick trip

SAFE Bike friendly

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

26

TRANSFERS is said to be obsolete, in favour of a transferPenalty parameter, and

SAFE doesn’t seem so relevant since it seems to be for bicycle. So we will always use

QUICK, and not give a choice.

4.5.5 wheelchair

Description: Whether the trip must be wheelchair accessible. Although the exact

meaning of this OTP parameter isn’t clear, it should exclude stairs from walk legs, which is

something we have the stairs parameter for.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

27

5 Tips

One of the most important services of the T&Tnet platform is the “Tips”. Tips are

stored to the Geodatabase in the Web application sub-system. The management of the

“Tips” are made in the Social API and are used from all the main sub-systems of the

platform. In particular, the user can provide tips or get tips by using the mobile application

or the web application. In addition, tips are used by the Planner sub-system in order to

propose the routes to the users.

The tips categories which are supported by the first prototype are fully reconstructed

based on the users’ evaluation. The new tips categories are strictly related to the

accessibility issues and made use of the existing tips on the Open Street Map. In addition,

in the final version the tips duplication aspect was solved. In the next paragraphs, there is a

more detailed description of the new tips categories and all the related issues.

5.1 Users profiles

The new tips categories are highly related to the different supported users’ profiles. In

particular, the T&Tnet system supports 3 types of user profiles which are described below:

 Administrator user (platform administrator): The user who manages and

supports the T&Tnet platform. For example, approve users’ requests etc.

 Official users (eg. councils, enterprises, etc. It will be validated by the

administrator):

o Web app Interface: In the registration page, there is a check box, so the

user can ask to be an official user. At first, this user is not stored

directly as official user, but the administrator of the platform will

approve this request.

o Technical aspects: Users table is modified and one more column is

added for the type of user. Official user type value: 2.

 VIALE end users:

o Technical aspects: Users table is modified and one more column is

added for the type of user. VIALE user type value: 0.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

28

5.2 Tips & Supported Services

There are two services in the T&Tnet platform which are related to the tips. The first

service is used in order to provide / store new tips in the system and the second one to

retrieve / get the stored tips. In the sequel, these services are described extensively.

5.2.1 Give Tip – Service

The users can provide geo-location information to the system. This will be done

through the T&Tnet web application by using the “Give Tip” interface
2
. The main points

of this service are given below:

 A simple list with choices is displayed to the user. There are no categories in

the final version as in the first one. The categorization is internal and is made

based on the choices of the list (especially icons). Figure 2 presents this

simple list with the corresponding icons.

o This list is classified into two parts:

 Positive Tips

 Negative Tips

2
 Deliverable D2.7 - Final Journey Planning and Social Collaboration Platform, section 4.3.3

Figure 2: List of tips – icons

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

29

 When the users selects the location for his tip (by clicking or giving address),

a call to the nominatim API (https://nominatim.openstreetmap.org/) is made in

order to get back info for this location based on the OSM. We do this call in

order to use the existing info about the places which are provided by the

OSM. As we mentioned before, in the T&Tnet platform will be stored only

accessibility info which are related to places based on OSM.

o Technical Aspects:

 Nominatim API call (example):

http://nominatim.openstreetmap.org/search?format=xml&q=41

.648832227075005,-0.8849569378635777&addressdetails=1

 temporaltip table is modified in order to store only the tips

which can be used by the planner.

 Table schema: (id, userID, icon_image, idTipOSM,

typeTipOSM,) valueTypeTipOSM, datein,

duration,comment, lon, lat, lonMP, latMP, road, city,

county, number, geocoding)

 poitip table is modified in order to store the rest of the tips,

based on the different types. The distinction between the types

of tips is made by the different icons.

 Table schema: (id, userID, icon_image, idTipOSM,

typeTipOSM,) valueTypeTipOSM, datein, comment,

lon, lat, lonMP, latMP, road, city, county, number,

geocoding)

 Internal tips categorization – icons: Table 4 shows the

internal categorization of the tips, in order to be used

efficiently by the sub-systems of the platform. In addition, the

green fields of the Table 4 indicate the type of tips which are

used by the Planner API in order to produce the routes.

Table 4: Internal tips categorization – icons numbering

http://nominatim.openstreetmap.org/search?format=xml&q=41.648832227075005,-0.8849569378635777&addressdetails=1
http://nominatim.openstreetmap.org/search?format=xml&q=41.648832227075005,-0.8849569378635777&addressdetails=1

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

30

No. Tip Type-Name Db Table Icon value

1. Elevator poitip 1

2. Escalator poitip 2

3. Stairs poitip 3

4. Toilets poitip 4

5. Bike poitip 5

6. Bench poitip 6

7. Broken Elevator temporaltip & poitip 7

8. Broken Escalator poitip 8

9. Slippery/Broken stairs temporaltip & poitip 9

10. Dysfunctional Toilets poitip 10

11. Dirty Benches temporaltip & poitip 11

12. Blocked road temporaltip 12

13. Cracked Tiles poitip 13

14. Traffic lights with insufficient time to

cross

temporaltip & poitip 15

5.2.2 Get Tips – Service

The users can look for tips in a specific area of interest through the T&Tnet platform

by using the “Get Tips” service
3
. In this final version of the T&Tnet system, we reconstruct

the previous version of this service by using 2 filtering levels. More specifically:

(i) the first filtering level is based on user profiles

a. Official user

b. VIALE user

c. My tips

(ii) the second one based kind of the tips: The user can check / select which of

the tips in the list (See Figure 2): wants to get back.

Tips duplication

3
 Deliverable D2.7 - Final Journey Planning and Social Collaboration Platform, section 4.3.2

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

31

Tips duplication is an important issue for the platform. We handle this issue in order

to offer to users, the stored tips which are multiples for a specific geo-location in an easier

way. Particularly, when for a geo-location there are more than one tip, the system will

display only one time the icon-tip on the map and in the popup message for the specific tip

will be shown all the stored comments. Figure 3 shows an example of how the system

displays this kind of tips. The key point of this procedure is the call to the Nominatim API

which is used in order to get the unique id of the tip-location based on the OSM.

Figure 3: Get tips View - Multiple comments in the same tip

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

32

6 Use cases with sub-system interaction

Based on the functional requirements and the sub-systems which will implement

them, the important use cases have been identified and a high-level system design has been

done to work out all the interactions needed, both between the users and the system and

between the sub-systems. The actors in these use cases are the user roles (Primary user and

Caregiver) and the sub-systems (Web, Planner, Tracker, App) introduced in chapter 2.

While this chapter focuses on the processes, it is complimented by chapter 7, focusing on

the structure. The architecture decisions placing data and processing in specific sub-systems

are explained in that chapter.

The five use cases are described using a common table schema. The main section is

the Main Flow, where the use case is broken down into an ordered list of interactions. Each

table is followed by a UML sequence diagram showing the interactions. The use cases are

not fully complete with respect to the possible functionality and client type permutations,

but near enough to cover all forms of sub-system interactions.

The sub-system interaction specification is a key result of the design process, and

forms the bases for the interface/API-specification in the following chapters. The use cases

and sequence diagrams are presented here in their final form, as implemented. The only

significant change from the initial draft version of this chapter in R1.4 is the exclusion of

the “Friend role” from the system, referring to the functionalities for travel with a friend.

Other than that, minor refinements have been done in the implementation phases.

6.1 Create and configure account

Use Case Number 1

Use Case Name Create and configure account

Actors Primary user, Web, Tracker, App

Summary Covers all the steps of creating and configuring a T&Tnet account

through the web, as well as logging in with this account on the app

for the first time.

Trigger/ intent User enters the T&Tnet website front-end

Preconditions The primary user is not yet registered in the system, but wishes to

be a user. The primary user has an email address, and this is not yet

registered as a user in the system.

Flow of events: 1. Enters a valid user name (email address) and password.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

33

(Main Flow)

2. Web checks there is no user id that uses the same user

name.

3. Web contacts Tracker to create account data for the user

there – asset with preferences representing user and device

representing the mobile app. The asset id is returned on

success.

4. Web database adds this new user to the platform, along

with Tracker asset id.

5. User is displayed the account was created successfully and

he is granted access to the main page.

6. User opens the preferences page, to review and edit

preferences. This is stored in the asset object in Tracker,

which must be retrieved to populate the preferences form.

7. The asset comes with default values for preferences, which

the user can modify.

8. When the user presses save on the web, the asset object

must be updated from the preferences form and returned to

the Tracker server for storage.

9. To start using the mobile app, the user logs in with the

username and password used when creating the account.

10. The app contacts the Web server through its API to execute

the login. If the username and password are correct, the

Web returns the username, password and asset id

identifying the user in Tracker.

11. The app then contacts the Tracker server and requests the

asset object with preferences, based on the asset id. From

the asset it also gets the associated device id used to

identify sensor observations sent to Tracker.

 Alternate flows User is requested to choose another password and name

 Password and name do not meet the correct format

 User abandons website

 Exceptional flows Tracker operation fails: Account creation fails with error

message.

Displayed information Form to enter username and password.

Postconditions The primary user has a configured account in the system, and may

start using the mobile client and social collaboration platform.

Relation to other use cases None of the rest of use cases can be performed unless this has been

done successfully.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

34

Figure 4: Sequence diagram for use case 1 – Create and configure account

6.2 Plan a trip

Use Case Number 2

Use Case Name Plan a trip

Actors Primary user, Web, Planner, Tracker, App

Summary User plans a trip through the web interface. Routes are calculated

for the user to acknowledge.

Trigger/ intent User pushes new trip

Preconditions User wants to plan a trip, knowing where she wants to travel from

and to (can write it down or pinpoint in a map).

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

35

Flow of events:

(Main Flow)

1. User enters the Journey Planner (main page) of the web.

2. Default values for travel preferences are stored in the asset

object. If not currently in memory, the web server must

retrieve this from the Tracker server, to use as suggested

values in the planner input fields.

3. The user provides departure and arrival points, and either a

start or arrival time. The default travel preferences may also

be modified for this trip.

4. The web server sends the parameters provided by the user

along with user identification to the Planner sub-system.

5. The route calculation additionally needs tips for blocked

locations within the area of the route (stored in the web

server database).

6. The Planner calculates routes, and stores them in its

database, marked as suggestions. The ACK to the Web

contains the number of routes.

7. The Web retrieves the route suggestions from the Planner,

and displays the routes.

8. User selects one of the routes proposed and acknowledges

her request.

9. The Web informs the Planner of the route choice, by

updating the status of the selected route to ‘accepted’ and

deleting any others.

10. When the app is running (as a background process on the

phone), it periodically polls the Planner for updated routes,

to stay in sync. So the new route is automatically synced to

the app, which can schedule notifications to the user based

on the planned departure time.

 Alternate flows The route calculation may produce one, several or no potential

routes. Possible reasons why a route can’t be produced:

 Address cannot be found

 Impossible to route destination (lack of a transport mode

selected, or other kind of reason)

 Exceptional flows The route planning will fail with an error message if one of the

servers can’t be reached.

Displayed information User is shown a map with routes and possible alternatives.

Postconditions Route is stored in the Planner with planned status, and synced to the

phone if the app is running.

Relation to other use cases Request navigation is the equivalent using the mobile app rather

than the web. Execute trip at departure time.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

36

Figure 5: Sequence diagram for use case 2 – Plan trip

6.3 Request navigation

Use Case Number 3

Use Case Name Request navigation

Actors Primary user, App, Web, Planner

Summary User wants navigation guidance to get to a specific place as soon as

possible, and requests navigation through the mobile app. Routes

are calculated for the user to acknowledge.

Trigger/ intent User wants navigation guidance, and pushes new trip in the app

interface.

Preconditions User has an account and is logged in on the app. User knows where

she wants to go.

Flow of events: 1. User enters the journey planner interface in the app.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

37

(Main Flow)

2. The journey planner includes a map. Tips are retrieved for

the shown area to display the map. Tips are cached locally,

but the Web server is also contacted to get updated tips.

3. The user selects a wanted destination (pointing on the

map).

4. The App asks the Planner to do route calculation, with the

current position and time as departure, user id, and the

travel parameters from the user’s preferences.

5. The route calculation additionally needs tips for blocked

locations within the area of the route (stored in the web

server database).

6. The Planner calculates routes, and stores them in its

database, marked as suggestions. The ACK to the App

contains the number of routes.

7. The App retrieves the routes and lists them for the user.

The user can see route details and display the routes on the

map.

8. User selects one of the routes proposed and acknowledges

her request.

9. Any routes not chosen are deleted from the Planner with

delete requests.

10. With a route successfully chosen, the app switches to

navigation mode. The chosen route has its status changed

to navigation, and this is communicated to the Planner.

 Alternate flows The default travel preferences may also be modified for this

trip.

 As with Plan a trip, a route may not be found (can’t find

address, no possible route to destination).

 Exceptional flows The route planning will fail with an error message if one of the

servers can’t be reached.

Displayed information User is shown a map with routes and possible alternatives.

Postconditions Route is stored in the Planner DB and the phone, and navigation is

starting.

Relation to other use cases Plan a trip is the equivalent using the web rather than the mobile

app. Directly followed by Execute trip if a route is accepted.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

38

Figure 6: Sequence diagram for use case 3 – Request navigation

6.4 Trip execution and feedback

Use Case Number 4

Use Case Name Trip execution and feedback

Actors Primary user, App, Web, Planner, Tracker, Caregiver

Summary User is given navigation guidance based on a route. The system

monitors progress and detects deviation, recalculating the route if

navigation is to continue after significant deviation. The caregiver

can be notified on repeated deviation. At completion, the user is

asked for emotional feedback.

Trigger/ intent Either selecting a pre-planned route to use, or the acceptance of a

route suggested by the app based on navigation request.

Preconditions User has an account and is logged in on the app. A route is present

in the app, and the user has agreed to start the trip.

Flow of events: The use case is made up of several sub-cases, each illustrated in

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

39

(Main Flow)

separate sections of the sequence diagram. First, initiation:

1. The user starts a trip, either a pre-planned trip or one

produced by a new trip request (use case 3).

2. The App enters tracking mode. The Tracker server is

informed that the user is now on a trip, and the route status

is updated on the Planner server.

While on a trip, the App regularly reads the current position from

the GPS sensor. Repeated at each position update – blue section in

diagram:

3. The App displays the route (if the map is shown) and

instructions for the current step.

4. The position is sent to the Tracker server, where it is

persisted. It is also processed by the reasoning engine.

5. When a position update indicates a change in route leg, this

is communicated to the Planner server, which keeps track

of the route state.

User deviates from the route – red section of diagram:

6. When a position update shows the user is having trouble

staying on the route or is falling behind the schedule, the

user is notified and a deviation is reported to the Tracker

server.

7. In this case the user doesn’t get back on track, instead

letting the deviation grow until the current schedule is no

longer feasible. The app again sends a deviation event to

the Tracker server.

8. The reasoning engine of the tracker server can be

configured to count and take action on significant

deviations. In this case it is reported to a caregiver via

SMS.

9. The significant deviation means the old route can no longer

be used for navigation. The app asks the user if she wants

to continue the trip.

10. Choosing to continue, a recalculated route is needed. The

App first sends a request to abort the trip to the Planner

server, which updates the route state and returns the travel

parameters used for the original route calculation.

11. The app is now ready to get a new route, from the current

time and place and to the original destination. This follows

the same procedure as in navigation request, starting with a

trip calculation request to the Planner server, but there is no

user interaction.

12. The Planner calculates routes, getting tips from the Web

database, and returns the number of routes to the app. The

app then retrieves the routes.

13. If the Planner produced multiple routes, the app selects one

automatically. It compares each suggestion with the

remainder of the old route, and selects the closest match (so

that the user can continue as originally planned, if possible,

without needing to choose again).

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

40

14. The selected route is acknowledged and the others deleted,

in transactions with the Planner. Navigation resumes.

Trip completion and feedback:

15. The last position update shows that the user has reached the

destination. She is informed of this, and navigation ends.

16. The Tracker server is notified that tracking has stopped,

and a route status update (trip is finished) is sent to the

Planner.

17. The user is asked to provide emotional feedback for each

public transport leg of the route just completed.

18. The user provides his feeling on the trip, and this is sent to

the Planner server, where it is stored.

 Alternate flows If a pre-planned trip is used to start navigation, and the

current time and place does not match that of the plan, a

route recalculation must be done initially. This starts with

the abort trip transaction, followed by the rest of the

transactions in the red box.

 When the Tracker reasoning engine processes incoming

observations, there may be other actions, such as

modifications of user preferences.

 On the significant deviation, the user could choose to end

the trip rather than get an updated route.

 The user can cancel the trip at any time.

 If there are no public transport legs, there is no request for

emotional feedback.

 The user can reject providing feedback. In this case,

feedback can be provided later using the web.

 Exceptional flows Reading of position may fail for a period of time, in which

case the App doesn’t know exactly where the user is in

relation to the route. In public transportation modes, the

navigation algorithm assumes the trip goes as planned, until

the GPS shows otherwise, but for walk mode a GPS update

is needed to advance the route state.

 Higher priority events (calls) may interrupt the guidance.

System restores it automatically when mobile app is

resumed.

 If a new route could not be produced after the significant

deviation, navigation ends with an error message.

Displayed information User is shown instructions during the trip, the route on the map

when the map is displayed, and a feedback interface with smileys

afterwards.

Postconditions The trip has been completed, and the tracked results are stored in

the Tracker. The Planner has stored the user’s feedback on the

completed trip, to use this information to improve the service, and

has updated the status of the route accordingly.

Relation to other use cases Follows as a consequence of either Plan a trip or Request

navigation. Feedback can also be given on the web, as in Provide

tips and feedback.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

41

Figure 7: Sequence diagram for use case 4 – Trip execution and feedback

6.5 Provide tips and feedback

Use Case Number 5

Use Case Name Provide tips and feedback

Actors Primary user, Web, Planner, Nominatim (third-party API)

Summary The user uses the web to give feedback to a completed trip and

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

42

enter accessibility information on a certain point on the map.

Trigger/ intent User clicks on Give Feedback

Preconditions User has completed a trip without giving emotional feedback, and

has new accessibility information to add.

Flow of events:

(Main Flow)

1. User enters the feedback web page.

2. Completed routes without feedback are fetched from the

Planner server, and these are listed on the web.

3. The user selects a route and provides emotional feedback

for each transit leg.

4. The feedback is sent to the Planner server, where it is

stored, and the user is thanked for the input.

5. Next the user enters the give tips page, where a map is

shown and the user can select a position by either clicking

on the map or writing an address.

6. The user selects a point on the map. Tips are placed with

reference to a place in OpenStreetMap data, and we use a

service called Nominatim to get OpenStreetMap data based

on map coordinates.

7. The user selects the type of tip by selecting an icon from a

list of accessibility items, and may optionally write a

comment.

8. The tip data is stored in the Web database.

 Alternate flows

 Exceptional flows

Displayed information Feedback interface with smileys, map to enter tip.

Postconditions The system has stored the feedback on the trip and the tip, and can

use this information to improve the service.

Relation to other use cases Providing feedback is done after Trip execution in use case 4, if

feedback is not provided at the end of the trip. Note that providing

tips can also be done in the app, using the same general procedure

as outlined here.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

43

Figure 8: Sequence diagram for use case 5 – Provide tips and feedback

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

44

7 System architecture

This chapter describes the logical view of the system, giving an overview of the

structure with components and interactions. We have already presented a division of the

system into four sub-systems, here we give a more detailed architecture overview, with the

server sub-systems divided into functional components and data stores which are described.

The sub-system interactions, first specified in the use case chapter, are also shown in terms

of these components, and the requirements for each sub-system API are listed at the end of

the chapter. But first we describe the architecture decisions behind the system structure.

7.1 Architecture decisions

This main sub-system division followed from how responsibility for implementing

the needed functionality was divided amongst the partners in the project. The key to a more

detailed structure lies in the data – decisions regarding where to store and process the key

types of data. There are three key forms of data, all of which are used in at least three of the

four sub-systems: users (with preferences), routes and tips. These data and the resulting

decisions are described here, as a key to understanding the architecture.

7.1.1 User accounts and profile data

The system needs to store various information about a user, and this information is

used throughout the system. All of the server applications need a way to uniquely identify

and authenticate a user, for secure access to the information. Both the Web/Social server

and the Tracker server will hold parts of the user information, and make this available to

the rest of the system through APIs. The server application of the T&Tnet web and social

API holds the primary part of the user accounts, with login details. Routes and tips,

discussed in the next sections, must also be tied to such a user account.

In SmartTracker, the user is a tracked entity, known as an asset in that system. An id

uniquely identifying the asset must be stored with the user account in the Web sub-system,

to link the user data in the two server applications. SmartTracker also stores the connection

to a sensor device, positions and other sensor observations, and configurable logic for the

reasoning engine, all tied to the asset. The other sub-systems will use SmartTracker’s API

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

45

to access this data, and for this they need an authentication token issued by SmartTracker.

The details are discussed in the Tracker API chapter. We want to avoid duplication of data,

which creates synchronisation problems, so data will always be accessed from the sub-

system responsible for it.

Each user has a set of preferences, such as for travel modes and accessibility. We

have chosen to store them with the asset in SmartTracker, as the reasoning engine will read

and potentially update the preferences continuously. This information will also be viewed

and edited in the web interface, as well as in the mobile app, and it is input for route

calculation, so preferences are related to all parts of the T&Tnet system. All sub-systems

except the Planner must be able to access assets, using the asset id and authentication data

stored with the primary account data in the Web sub-system.

7.1.2 Route calculation, representation and processing

Trip routes are an important core factor throughout most of the T&Tnet system, and

have many aspects. A trip can be planned in advance, so the resulting route must be stored

and transmitted to the mobile app where navigation takes place. During trip execution, the

route data has two important functions. It is used to provide navigation for the user, such as

drawing the route on a map and giving turn-by-turn instructions, and it is used to keep track

of progress relative to the route, so that deviations can be detected and handled. The route

might need updating during the trip, to account for user deviations or changing conditions.

Afterwards, feedback is given for the route, and this must be processed and stored.

The Planner sub-system is responsible for producing the routes, with Open Trip

Planner at its core. OTP produces routes in an itinerary data structure, where the itinerary

representing the route as a whole is divided into legs of different transport modes which can

be further divided into steps for detailed instructions. T&Tnet adds a layer on top of OTP,

adding the concepts of users, accessibility preferences and emotional ratings from

feedback, and also taking accessibility tips into account. T&Tnet also adds a layer to the

data structure, with a route element which contains an augmented OTP itinerary and gives

it a unique id.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

46

For the navigation and tracking aspects, there is a question of client versus server for

implementing the logic. The SmartTracker Reasoning Engine runs on the server side, and

this will implement configurable logic and take actions on route deviation. However,

tracking of route progress must be done in the mobile app to be able to provide navigation,

and it should also be able to take action on route deviation as a connection to the server is

not always available. For this reason, and to utilize limited resources where they are most

needed, routes will not be represented or processed in the SmartTracker server. The route

following logic is placed in the mobile app, and it is responsible for detecting deviations

and sending such deviation events to SmartTracker to inform the reasoning engine.

A consequence of this decision is that server-side storage and processing of routes

can be confined to the Planner sub-system, with route operations confined to its API.

Planned and executed routes should be available both on the web and on the mobile app, at

least as long as feedback has not been provided, so they need server-side storage. Whether

requested from the web interface or from the mobile app, they need to be stored on the

server. When providing a set of route suggestions, they are temporarily stored (until

accepted or a new request is made), and if one route is accepted it is stored with a status of

planned. The mobile app will poll for new planned routes regularly to be in sync with the

server. On detection of route deviation, the mobile app must inform the server that the route

should be discarded, and get back the parameters used to plan the original route, so that it

can request a new route. This way the mobile app can request a new route using the same

parameters used for the original route, even if that was planned from the web.

Route feedback can be given through both the app and web interfaces. It is the

Planner sub-system which is responsible for processing and storing this feedback, so that it

can use the result to enrich future route suggestions. When producing route suggestions,

ratings resulting from feedback are included in the T&Tnet specific route data, to be

visualised when routes are displayed to the user and help the user choose a route that

matches his preferences.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

47

7.1.3 Tips

Tips are accessibility-related location-specific information entered by users. It can be

entered through the web, and the Web sub-system has been selected as responsible for

storing the tips. Tips can also be added through the mobile app, and the app needs access to

tips to display in the map. The Planner sub-system needs access to tips representing

temporary blockage of routes. So all sub-systems need access to tips, and this must be

handled by the Social API of the Web sub-system.

Figure 9: Logical view of T&Tnet system

7.2 System components

Figure 9 shows the system structure, resulting from the architecture decisions. The

red boxes indicate the main functions of the server applications, and the grey cylinders

indicate the data stores. The front ends are shown at the top of the diagram. The mobile app

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

48

is divided into two components for this view, as the sensor side is semi-independent of the

rest. The web front end is an aspect of the server application (the function boxes are the

functions available through the web user interface).

The figure also shows the main flows of data between the components (arrowheads

indicate direction of data flows). APIs through which the sub-systems interact are indicated

by the coloured lines - these are described at the end of this chapter. However, as the Web

and Planner sub-systems are part of a common server application, data flow between them

won’t necessarily use HTTP-based APIs.

7.2.1 Geo DB

Two forms of data are housed in the Web sub-system: T&Tnet accounts, and tips. We

refer to it as the Geo database because the tips are location bound (geo-information).

A T&Tnet user account has authentication information (username and password) and

a user type in this database. It also has a reference to a SmartTracker asset, which

represents the user in the SmartTracker service, with preferences and position.

The tips database has to be considered as a geo-database (information which is

located by coordinates). It is for information on points of interest entered by users: the

points themselves, and comments. This data is available and visible to all users of the

system. See chapter 5 for the specification of tips, and section 8.2 for specification of the

database tables of the Geo DB.

7.2.2 Tips Management

Web interface functionality related to tips. Tips can be shown with icons in a map

layer, and any comments associated with a tip can be displayed. Users can add tips. This

functionality reads and writes tips from the Geo DB.

7.2.3 Account Management

This component represents both creation of accounts and editing of preferences

through the web interface. User account data is stored both in the Geo DB of the Web and

the Tracker DB of SmartTracker, so this functionality must interact with both data stores.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

49

7.2.4 Journey Planner

This component represents the journey planner part of the web application, showing

the map and letting the user plan trips. It invokes the Route Calculation module with the

parameters provided by the user, such as start and end time and place. Route Calculation

returns routes, which are displayed on the map. Once the user confirms a route, it must be

stored in the Route DB.

7.2.5 Trip Feedback

The user can provide emotional feedback for previously completed trips through the

web interface. The feedback is stored in the Route DB.

7.2.6 Route DB

This is the storage of route-related data. Two main forms of route-related data need to

be stored. Firstly, a user is given a set of suggested routes that are temporarily stored. When

a user accepts a route in the Journey Planner or Mobile App, it must be stored so that it will

later be available for navigation and feedback. The other suggested routes are removed.

Once feedback has been given or the plan has been cancelled, the route may be deleted. A

route is owned by a user, and only available to that user.

The other form of data is the emotional feedback provided by users. The feedback

aggregated from all the completed trips will be collectively available to T&Tnet users.

Route calculation will then get input from this database to sort the different legs as green,

yellow or red.

7.2.7 Route Calculation

The Route Calculation functionality builds on Open Trip Planner. OTP provides the

basic route calculation algorithm, using map data, public transport data (GTFS) and real-

time data if available. To this, a number of T&Tnet aspects of routes are added: the

preferences of the user, shared and synchronised routes for two users, accessibility tips, and

previous route feedback. The routes produced therefore contain much additional

information compared to OTP planner output.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

50

A route can be requested through the Journey Planner web interface, or through the

mobile app interface, in both cases through the Planner API. The result may be several

alternative routes for the user to choose between. An addition compared to OTP is that the

server needs to associate an accepted route with a user and store it. The stored routes will

then be available from the database through the Planner API.

7.2.8 Tracker DB

This is the database of the SmartTracker server, storing all the user-related

information needed for tracking and reasoning. Firstly, there is the setup of the user, such as

the profile with preferences and the sensor device (phone) used to track the user. The

history of received sensor data is stored, at least for a time, so that it can be analysed. Data

making up system intelligence is also stored here: the rules for the reasoning engine and

rule state data. The relevant data from this database is available externally through an API,

so that the Web server and mobile App can retrieve and insert data.

7.2.9 Mobile App Sensors

The sensor part of the mobile app has been separated from the other functionality in

the architecture overview because this communicates with the server side through a

separate API and as far as the SmartTracker server is concerned it could as well be realized

by a stand-alone sensor device. As an app component, it manages the sensors of the phone

and tries to keep track of the user’s position during trips. It persists data locally, and

transmits it to the server whenever possible, implementing the client side of the Sensor

API. However, the sensor data is also vital for the Navigation functionality of the app.

7.2.10 Sensor Receival

Following the path of the sensor data, the SmartTracker server has components for

receiving sensor data from devices. SmartTracker has support for a number of device-

specific protocols, but in this case we are primarily using SmartTracker’s native sensor API

as we are using a custom mobile app as device. Sensor data are persisted in the database,

and fed to the Reasoning Engine.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

51

7.2.11 Reasoning Engine

The Reasoning Engine in SmartTracker is based on the Drools rule engine. Both

simple service logic and more complex artificial intelligence can be created with rules. The

rules process the account and state data associated with the user along with the sensor data.

7.2.12 Action Triggering

When a rule triggers, the resulting action can either be internal, updating the state

associated with the user, or external, such as sending out an alert. Updating the persistent

state can represent learning (the reasoning engine has inferred something new about the

user).

7.2.13 Mobile App

Most functionality of the system will be available in the mobile app, which needs to

use APIs to communicate with the various server sub-systems. The user data of the Web

sub-system is polled and updated through the Social API. Likewise the user data stored in

the SmartTracker server is polled and updated through its Tracker API. The app will also

request routes through the Planner API.

7.3 Interfaces

In the Use Cases (chapter 6) and the architecture in the current chapter we have introduced

the interactions between the different parts of the system. The interfaces between the sub-

systems are very important, as these sub-systems are developed by different partners.

Figure 10 identifies the interactions that cross sub-system boundaries. The requirements on

the resulting sub-system interfaces are listed here. Numbers in brackets refer to the

interaction numbers in the figure (showing which components interact). Based on these

requirements, detailed API specifications are given in the following chapters.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

52

Figure 10: Sub-system interactions

7.3.1 Social API

Access to the Geo DB as needed by other sub-systems (this section is about machine-

to-machine interfaces, so this is not a web user interface).

● LOGIN/GET account [1]: App provides authentication data, receives account data

including SmartTracker user identifier.

● GET tips [1, 2]: Request tips for a map section (rectangular area).

● ADD tip [1]: App posts new tips/comments.

7.3.2 Planner API

For requesting new routes and interacting with stored routes, as well as posting route

feedback.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

53

● CREATE new route [3, 5]: Both web and app can make a request for route

calculation, specifying user id, start and end points, start or end time and travel

preferences.

● GET routes [3, 5]: Both web and app needs to retrieve route suggestions after route

calculation, and to retrieve previously planned routes to display them and allow the

user to cancel a planned trip. The mobile app also needs to retrieve plans to notify

the user and start navigation. The web needs to retrieve finished routes without

feedback, for the user to give feedback on the web.

● MODIFY route status [3, 5]: Both web and app needs to set a route as accepted after

route calculation. The app also informs the server when a route is started and

completed.

● DELETE planned route [3, 5]: To cancel a plan from web or app. This should also

be used to delete unused suggestions after route planning.

● MODIFY leg status [5]: The mobile app informs the server when a leg is completed

in the trip, so that the server knows which legs were completed and need feedback if

the route is later aborted.

● ABORT route [5]: If a new route is needed during a trip, the mobile app calls the

server to abort the route, and gets back the parameters used to plan it, to reuse them

when creating a new route.

● ADD route feedback [4, 5]: Emotional feedback for route legs can be added from

web and app.

7.3.3 Tracker API

Access to the SmartTracker domain objects, primarily the asset representing the user

with position and preferences.

● GET asset [6, 7]: The user asset holding preferences is needed in the web to

show/edit preferences, and by the app.

● MODIFY asset [6, 7]: Preferences may be edited on the web and app.

● CREATE account entities [6]: Asset and device entities are created from the web

when creating a new account.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

54

7.3.4 Sensor API

SmartTracker has an API for receiving observations from sensor devices. The Sensor

API will not be detailed in this document, as Tellu is responsible for both sides of the

interaction.

ADD observation [8]: The mobile app plays the role of sensor device, and will send

such observations as positions, alarm button presses and route deviation.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

55

8 Social API

8.1 Introduction

Interface usage: App, Planner

Interface implementation responsibility: GEO

The Social API is responsible for supporting interconnection and communication

methods between the sub-systems (Planner and Mobile App) of the T&Tnet platform and

the Web application. Furthermore, Social API is used in order to provide access to the

GeoDB data which are required by the Planner and the Mobile App.

8.2 Geodatabase

The Geodatabase is highly related to the web application. In this DB, there are three

tables which are connected to the Social API. These tables are presented in details below:

Users’ table stores information about the user’s account. In Table 5, there is a detailed

description of User’s table characteristics.

Table 5: Users

Column Description

userID The user’s id

username The user’s username (which is the first part of the registered email) for the

registration/log in action

password The user’s secret code for the registration/log in action

assetID This is the assetID which communicates with the SmartTracker

email The user’s email for the registration/log in action

typeUser The type of user. Administrator (-1), VIALE user (typeUser =0), Official User

(typeUser=2)

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

56

TemporalTip table stores information about the tips which can be used by the

planner API. In Table 6, there is a detailed description of the characteristics of the

temporaltip table.

Table 6: temporaltip table structure

Column Description

id The unique id for each record

userID The user’s id who add the tip

idTipOSM The id of the tip location based on the OSM. This value is retrieved

from the OSM after the call to the Nominatim API.

typeTipOSM The type of the tip location based on the OSM. This value is

retrieved from the OSM after the call to the Nominatim API.

valueTypeTipOSM The type’s value of the tip location based on the OSM. This value is

retrieved from the OSM after the call to the Nominatim API.

icon_image The icon value of the tip.

datein The date of the tip insertion

duration The expected duration time of the tip

comment The user’s comment for a specific point (location) (default value

null)

lon, lat The coordinates of the tip’s location

road The road name of the tip’s location (default value null)

number The road number of the tip’s location (default value null)

city The city of the tip’s location (default value null)

country The country of the tip’s location (default value null)

geocoding This field stores information about the type of the tip’s insertion in

the platform

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

57

PoITip table stores the rest of the tips (accessibility info about the selected

locations), based on the different types. The distinction between the types of tips is made by

the different icons. In Table 7, there is a detailed description of PoITip’s table

characteristics.

Table 7: PoITip Table

Column Description

id The unique id for each record

userID The user’s id who add the tip

icon_image The icon value of the tip.

idTipOSM The id of the tip location based on the OSM. This value is retrieved

from the OSM after the call to the Nominatim API.

typeTipOSM The type of the tip location based on the OSM. This value is

retrieved from the OSM after the call to the Nominatim API.

valueTypeTipOSM The type’s value of the tip location based on the OSM. This value is

retrieved from the OSM after the call to the Nominatim API.

datein The date of the tip insertion

comment The user’s comment for a specific point (location) (default value

null)

lon, lat The coordinates of the tip’s location

road The road name of the tip’s location (default value null)

number The road number of the tip’s location (default value null)

city The city of the tip’s location (default value null)

country The country of the tip’s location (default value null)

geocoding This field stores information about the type of the tip’s insertion in

the platform

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

58

Example: Nominatim API call:

http://nominatim.openstreetmap.org/search?format=xml&q=41.648832227075005,-

0.8849569378635777&addressdetails=1

 Response:

<searchresults timestamp="Thu, 25 Sep 14 11:51:43

+0000" attribution="Data © OpenStreetMap contributors, ODbL 1.0.

http://www.openstreetmap.org/copyright"querystring="41.648832227075005,-

0.8849569378635777" polygon="false" exclude_place_ids="19547116" more_url

="http://nominatim.openstreetmap.org/search?format=xml&exclude_place_ids=

19547116&accept-language=el-

GR,el;q=0.8,en;q=0.6&addressdetails=1&q=41.648832227075005%2C-

0.8849569378635777">

<place place_id="19547116" osm_type="node" osm_id="1792256947" place_ran
k="30" boundingbox="41.6488761901855,41.6488800048828,-

0.884980022907257,-0.884979963302612" lat="41.6488776"lon="-

0.88498" display_name="Novodabo, 12, Plaza Aragón, Zaragoza, El Gancho,

Σαραγόσα, Aragon, 50004,

Ισπανία" class="amenity" type="restaurant" importance="0.001"icon="http:/

/nominatim.openstreetmap.org/images/mapicons/food_restaurant.p.20.png">

<restaurant>Novodabo</restaurant>
<house_number>12</house_number>

<pedestrian>Plaza Aragón</pedestrian>

<residential>Zaragoza</residential>

<suburb>El Gancho</suburb>

<city>Σαραγόσα</city>

<county>Σαραγόσα</county>

<state>Aragon</state>

<postcode>50004</postcode>

<country>Ισπανία</country>

<country_code>es</country_code>

</place>

</searchresults>

idTipOSM place_id (19547116)

typeTipOSM restaurant

valueTypeTipOSM Novodabo

TokenAPI table stores tokens which are generated by the platform when the mobile app

makes a request to the Social API. Every token corresponds to a particular user and has a

specific life time to the platform.

http://nominatim.openstreetmap.org/search?format=xml&q=41.648832227075005,-0.8849569378635777&addressdetails=1
http://nominatim.openstreetmap.org/search?format=xml&q=41.648832227075005,-0.8849569378635777&addressdetails=1

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

59

Table 8: TokenAPI Table

Column Description

idUser The user’s id who adds the tip

token The unique token

timeGen The date and time of the token’s generation

used This field stores information of the usage of the generated token

8.3 Supported Methods

There are three main methods which are supported: (i) user’s authentication method

(ii) retrieve tips service (iii) give tip service. More specifically, the supported services are

given below:

8.3.1 registerUser

 This method is used in order to send account data to the mobile application.

Particularly, mobile app provides as input: (i) username (ii) password. The method is

responsible to check if this authentication data are correct and the user has a valid account

to the T&Tnet platform. If the authentication data are correct, this method generates a token

which will be used by the mobile application for every other request to the Social API. As a

result, the output of this method is the account data with a unique token. In the Error!

Reference source not found., there is a detailed description of the method’s parameters.

PathParams: {username}, {password}

Path: rest/socialApi/registerGet/{username}/{password}

Example:

http://ttnetgeo.isoin.es:8080/TTNetSocialApi/rest/socialAPI/registerGet/elenaTest/3333

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

60

Table 9: registerGet Method

Property Description

username The user’s username.

password The user’s password.

8.3.2 retrieveTips

This method is responsible for retrieving the tips from the Geodatabase in order to send

them back to the mobile app. The retrieved tips correspond to a specific rectangular area.

Thus, the input parameters of this method are two points (lon, lat) in order to specify the

map area. The one point refers to the north-west corner of the rectangular area and the

second one to the south-east corner. Additional inputs will be provided to the method

regarding the tip’s icon. In the table below, there is a detailed description of the method’s

parameters.

PathParams: {tokenUser},{cornerNW},{CornerSE},{ typeUserSelected },

{ tipsCategSelected }

 {typeUserSelected }: type of the user who provided the tips

 {tipsCategSelected }: String which stores the selected tip categories. The tip

categories are represented by the icon numbers, which are separated by ','. ex. 1,2,10

Path:

rest/socialAPI/retrieveTips/{tokenUser}/{cornerNW}/{CornerSE}/{typeUserSelected}/{tip

sCategSelected}

Example:

http://localhost:8080/RestApiTTNet/rest/socialAPI/retrieveTips/RTSIOHJ3Z7Z9ZR7/-

96471.591400292,-5426.3563219/5107253.5053769,6709689.40331/0/1,2,3,4,5,6,7,8,9,10

http://localhost:8080/RestApiTTNet/rest/socialAPI/retrieveTips/RTSIOHJ3Z7Z9ZR7/-96471.591400292,-5426.3563219/5107253.5053769,6709689.40331/0/1,2,3,4,5,6,7,8,9,10
http://localhost:8080/RestApiTTNet/rest/socialAPI/retrieveTips/RTSIOHJ3Z7Z9ZR7/-96471.591400292,-5426.3563219/5107253.5053769,6709689.40331/0/1,2,3,4,5,6,7,8,9,10

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

61

Table 10: retrieveTips Method

Property Description

tokenUser The authentication unique token

cornerNW The (lat,lon) of the north-west corner of the rectangular area

cornerSE The (lat,lon) of the south-west corner of the rectangular area

typeUserSelected This property corresponds to the “type of user” who provides the tips

and takes value “0” for VIALE users, “2” for Official users and “-1”

for “my tips” option (tips which are provided by the user who requests

the tips).

tipsCategSelected This property corresponds to the “selected tip categories” and takes

value from [1-15]. In particular, this property is string which stores the

selected tip categories, separated by ‘,’. Example: 2,10,15

8.3.3 giveTip

This method is responsible for storing the tip in the Geodatabase, giving through the

mobile app The input parameters of this method are (i) user’s authentication token (ii)

location - point (longitude, latitude) (iii) tip category (iv) the icon of the tip (v) comment

(optional) (vi) id Tip OSM, which is the id of the tip which is retrieved after the call to the

nominatim (https://nominatim.openstreetmap.org/) API for the specific location (vii) type

Tip OSM, which is the type of the tip which is retrieved after the call to the nominatim API

for the specific location (viii) value Type Tip OSM, which is type value of the tip which is

retrieved after the call to the nominatim API for the specific location.

PathParams:{tokenUser},{lon},{lat},{comment},{iconImageP},{idTipOSM},{typeTipO

SM},{valueTypeTipOSM}

 { idTipOSM}: the id of the tip location based on the OSM

 { typeTipOSM}: the type of the tip location based on the OSM.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

62

 {valueTypeTipOSM}: the type’s value of the tip location based on the OSM

Path:

rest/socialAPI/giveTip/{tokenUser},{lon},{lat},{comment},{iconImageP},{idTipOSM},

{typeTipOSM},{valueTypeTipOSM}

Example:

http://localhost:8080/RestApiTTNet/rest/socialAPI/giveTip/FK61DO5NLIGBREA/-

0.88391820000004/41.654028/slipperstairs/9/90669869/tram/Calle del Coso

Table 11: giveTip method

Property Description

tokenUser The authentication unique token

lon, lat The location of the tip.

comment The comment (string) provided by the user for the specific location –

tip.

iconImageP This property specifies the category of the tip and takes value from

[1-15].

idTipOSM This property corresponds to the “id” of the tip based on the OSM.

This id is retrieved from the corresponding call the Nominatim API.

typeTipOSM This property corresponds to the “type” of the tip based on the OSM.

This type is retrieved from the corresponding call the Nominatim

API.

valueTypeTipOSM This property corresponds to the “type’s value” of the tip based on

the OSM. This type’s value is retrieved from the corresponding call

the Nominatim API.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

63

9 Planner API

9.1 Introduction

Interface usage: App, Web

Interface implementation responsibility: ITA

Responsible for calculating routes based on input from available public transport

agencies, mobility data sources, route tables, emotional feedback, user profile and

accessibility-related data. Next, an update of the previously defined methods is provided.

For further information over the latest methods, refers to the D2.2 Final Travel and

transport infrastructure prototype.

9.2 Route database

A route is defined as the itinerary given by OTP (JSON or XML representation) with

coloured-legs according to historical emotional feedback. A route can be labelled as:

1. to-be-decided: the route has just been calculated and user must decide what to do

2. accepted: the route is accepted by the user.

3. navigation: the routes is being used by the user.

4. finished: the user has finished the complete itinerary of route.

5. feedbacked: the user has provided feedback to the route. The route is considered as

feedbacked if at least one route leg is given feedback.

Routes table

Column Description

idroute A unique id associated to the route

iduser The user that made the request for a trip plan.

datetime The date and time when user made the request.

label The label associated to the trip (1-5)

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

64

startinglocation The starting location (latitude, longitude)

endinglocation The end location (latitude, longitude)

startinglocationname The starting location description

endinglocationname The end location description

departure time The time when route starts

itinerary The response returned by OTP with coloured-legs

Legs table

Column Description

idleg A unique id that identifies a sequence of transport stops for each public

transport line

transport

mode

The transport mode of the leg

line The associated public transport line

agency The transport agency providing the service

startlocation starting stop

endlocation ending stop

Feedback table

Column Description

idleg A unique id that identifies a sequence of transport stops for each public

transport line.

idroute The id route which contains the leg in which feedback is provided

datetime The date and time when feedback is provided

seats

availability

Green, yellow or red.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

65

speed Green, yellow or red.

hour The hour when the trip started

9.3 Supported methods

9.3.1 getroutes

The method returns a set of routes of the user of a specific label. In case the departure

time of the route is greater than current time, the planned route is not returned.

Parameters

Property Description

iduser The id of user that requests the planned routes.

type The label of the routes to be returned. Example: “to-be-decided”, “accepted”,

”completed” ..

Results: The method returns the planned routes labeled as type

9.3.2 changeroutestatus

The method receives the idroute of the route and a new status for the route.

Parameters

Property Description

iditinerary The id of route

iduser The id of user that requests the planned routes.

type The new status for the route. Keep in mind that the status changes by

increasing the value in one unit (from 1 to 5).

Results: The method returns ACK.

9.3.3 deleteroute

The method deletes the route from the system.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

66

Parameters

Property Description

iduser The id of user that requests the planned routes.

iditinerary The id of route

Results: The method returns ACK.

9.3.4 tripcalculation

This method will make a request for a trip plan. The call includes the two points

(latitude/longitude or the address), the user id, the user preferences (max walking distance,

max number of transfers, accessibility issues) and updated accessibility-related information

from Geo-DB. The method will also evaluate trips based on historical feedback provided by

users. The user must indicate in his/her preferences the form they want the routes to be

displayed.

The emotional feedback can be classified at 4 time periods:

 From 07:00 to 10:00

 From 10:00 to 14:00

 From 14:00 to 19:00

 From 19:00 to 0:00

This classification is a good approximation to the natural way that transport public

agencies schedule their routes.

Example:

http://193.144.226.70:8080/ita-ttnet-planner/planner-

api/tripcalculation?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoz

a&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,

&toPlace=41.67241471709407,-0.8589274404785212&fromPlace=41.63470585142353,-

http://193.144.226.70:8080/ita-ttnet-planner/planner-api/tripcalculation?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.67241471709407,-0.8589274404785212&fromPlace=41.63470585142353,-0.9481913564941579,&toPlace2=&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:8080/ita-ttnet-planner/planner-api/tripcalculation?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.67241471709407,-0.8589274404785212&fromPlace=41.63470585142353,-0.9481913564941579,&toPlace2=&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:8080/ita-ttnet-planner/planner-api/tripcalculation?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.67241471709407,-0.8589274404785212&fromPlace=41.63470585142353,-0.9481913564941579,&toPlace2=&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:8080/ita-ttnet-planner/planner-api/tripcalculation?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.67241471709407,-0.8589274404785212&fromPlace=41.63470585142353,-0.9481913564941579,&toPlace2=&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

67

0.9481913564941579,&toPlace2=&fromPlace2=&stairs=true&elevators=true&waitAtBegi

nningFactor=0.2&date=2014-10-16

Parameters

Property Description

Token The token

routerId The name of the city where the route will be calculated (zaragoza,

oslo, paris, vienna)

fromPlace The start location (latitude/longitude or address)

fromPlace2 The start location used for synchrotrips.

toPlace The end location (latitude/longitude or address)

toPlace2 The end location used for shared trips

iduser An object containing the id of the user making the request.

date The date that the trip should depart or arrive. When empty, the

current date will be considered.

time The time that the trip should depart or arrive. When empty, the

current mete will be considered.

arriveBy Whether the trip should depart or arrive at the specified date and time

walkSpeed The user's walking speed in meters/second.

maxWalkDistance The maximum distance (in meters) the user is willing to walk

stairs true or false . If the value is false the streets with stairs will be avoided

in the calculation process

Elevator True or false

bannedFrom The start location (latitude/longitude) of a street that will be avoided

in the calculation process

bannedTo The end location (latitude/longitude) of a street that will be avoided in

the calculation process

bannedStreets A list of streets’ names that will be avoided in the calculation process

http://193.144.226.70:8080/ita-ttnet-planner/planner-api/tripcalculation?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.67241471709407,-0.8589274404785212&fromPlace=41.63470585142353,-0.9481913564941579,&toPlace2=&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:8080/ita-ttnet-planner/planner-api/tripcalculation?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.67241471709407,-0.8589274404785212&fromPlace=41.63470585142353,-0.9481913564941579,&toPlace2=&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

68

bannedPlaces A list of locations (latitude/longitude) that will be avoided in the

calculation process

mode The set of modes that a user is willing to use.

Possible values are:

 'TRANSIT,WALK' for public transport,

 'BUSISH,WALK' for Bus only,

 'TRAINISH,WALK' for Train only,

 'WALK' for Walk only,

 'BICYCLE' for Bicycle only,

 'WALK,BICYCLE' for 'Rented or Public Bicycles,

 'TRANSIT,BICYCLE' for 'Transit & Bicycle,

 'TRANSIT,WALK,BICYCLE' for Transit & Rented Bicycle

Results: The method will provide a set of trips that meet the user’s preferences. The trips

will be stored in the Routes table labeled as to-be-decided.

9.3.5 insertfeedback

Insert emotional feedback provided by the user into the Feedback table. Given the

from and to stops, the method verifies if the specific leg exists in the database. If not, a new

leg will inserted in the Legs table. This table will be filled with the data provided in the

parameters.

Parameters

Property Description

iditinerary The route id

idleg The leg id

iduser The user id

hour The hour when the trip started

speed Green, yellow or red.

seatsavailability Green, yellow or red.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

69

Results: the table Feedback table is filled with the feedback. Also, a new leg is created if

not available.

9.3.6 getdestinations

This method retrieves the user destinations order by the most recent. The method is

intended to ease the selection of a destination by the user. The attribute count contains the

occurrences of each destination.

Field Description

Iduser The user’id

http://193.144.226.70:8080/ita-ttnet-planner/planner-api/getdestinations?iduser=93

9.3.7 getstreets

This method retrieves all the streets of a specific city that contains a string of

characters.

http://193.144.226.70:8080/ita-ttnet-planner/planner-api/getstreets?routerId=paris

http://193.144.226.70:9091/ita-ttnet-planner/planner-api/getstreets?street=Jos&routerId=oslo

9.3.8 getStreetNumbers

The method returns the house numbers of a specific street

http://193.144.226.70:9091/ita-ttnet-planner/planner-

api/getstreetnumbers?street=Calle%20de%20Bolonia

Field Description

routerID city’s name

street A string containing the set of characters to search for

http://193.144.226.70:8080/ita-ttnet-planner/planner-api/getdestinations?iduser=93
http://193.144.226.70:8080/ita-ttnet-planner/planner-api/getstreets?routerId=paris
http://193.144.226.70:9091/ita-ttnet-planner/planner-api/getstreets?street=Jos&routerId=oslo
http://193.144.226.70:9091/ita-ttnet-planner/planner-api/getstreetnumbers?street=Calle%20de%20Bolonia
http://193.144.226.70:9091/ita-ttnet-planner/planner-api/getstreetnumbers?street=Calle%20de%20Bolonia

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

70

Field Description

routeID city’s name

street The name of the street

9.3.9 synchrotrips

The method synchronizes the trips of two users that want to reach the same

destination at the same time. The algorithm calculates the trips for each user separately.

Afterwards, the method checks if the last part of the trips (a set of legs) concurs and, in case

of positive answer, delay or put forward the departure time of one user.

http://193.144.226.70:9090/ita-ttnet-planner/planner-

api/synchrotrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&banned

Places=&mode=,TRANSIT,WALK&maxWalkDistance=50000&bannedStreets=,&toPlace=41.672

526912910456,-0.8900410650512488&fromPlace=41.63270114851638,-

0.9048039434692308,&toPlace2=&fromPlace2=41.63443321549116,-

0.884633731677243&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16

The request for syncho is quite similar to calculate trips with a new field:

Field Description

fromPlace2 The origin place of the second user

9.3.10 sharedtrips

The method calculates the trips for two users that depart from the same origin at the

same time. The algorithm calculates the trips for each user separately. Afterwards, the

method checks if the initial part of the trips (a set of legs) concurs and, in case of positive

answer, provide all the possible combinations.

http://193.144.226.70:9090/ita-ttnet-planner/planner-

api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPl

aces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.646428

http://193.144.226.70:9090/ita-ttnet-planner/planner-api/synchrotrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=50000&bannedStreets=,&toPlace=41.672526912910456,-0.8900410650512488&fromPlace=41.63270114851638,-0.9048039434692308,&toPlace2=&fromPlace2=41.63443321549116,-0.884633731677243&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/synchrotrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=50000&bannedStreets=,&toPlace=41.672526912910456,-0.8900410650512488&fromPlace=41.63270114851638,-0.9048039434692308,&toPlace2=&fromPlace2=41.63443321549116,-0.884633731677243&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/synchrotrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=50000&bannedStreets=,&toPlace=41.672526912910456,-0.8900410650512488&fromPlace=41.63270114851638,-0.9048039434692308,&toPlace2=&fromPlace2=41.63443321549116,-0.884633731677243&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/synchrotrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=50000&bannedStreets=,&toPlace=41.672526912910456,-0.8900410650512488&fromPlace=41.63270114851638,-0.9048039434692308,&toPlace2=&fromPlace2=41.63443321549116,-0.884633731677243&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/synchrotrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=50000&bannedStreets=,&toPlace=41.672526912910456,-0.8900410650512488&fromPlace=41.63270114851638,-0.9048039434692308,&toPlace2=&fromPlace2=41.63443321549116,-0.884633731677243&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/synchrotrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=50000&bannedStreets=,&toPlace=41.672526912910456,-0.8900410650512488&fromPlace=41.63270114851638,-0.9048039434692308,&toPlace2=&fromPlace2=41.63443321549116,-0.884633731677243&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-16
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.6464281055546,-0.9076578138612019&fromPlace=41.68196668902734,-0.8869940756105218,&toPlace2=41.63347096180583,-0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-17
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.6464281055546,-0.9076578138612019&fromPlace=41.68196668902734,-0.8869940756105218,&toPlace2=41.63347096180583,-0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-17
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.6464281055546,-0.9076578138612019&fromPlace=41.68196668902734,-0.8869940756105218,&toPlace2=41.63347096180583,-0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-17

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

71

1055546,-0.9076578138612019&fromPlace=41.68196668902734,-

0.8869940756105218,&toPlace2=41.63347096180583,-

0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&da

te=2014-10-17

Field Description

toPlace2 The destination place of the second user

The XML response has the same format that synchro. It may happen that more than

one solution can be found. It depends for the users to select the most suitable for them. The

most disadvantaged user may see that his/her router is too long and may wish to select other

solution.

9.3.11 confirmLegCompleted

Every time the app detects that the user has completed a leg, make a call to this

method to update the leg on the planner side. The leg status is set to complete.

Field Description

Idleg The leg’s id

Iduser The user’id

idtrip The trip’id

9.3.12 abortTrip

It is similar to make a call to the method changeroutestatus with a type = aborted.

Field Description

Iduser The user’id

http://193.144.226.70:9090/ita-ttnet-planner/planner-api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.6464281055546,-0.9076578138612019&fromPlace=41.68196668902734,-0.8869940756105218,&toPlace2=41.63347096180583,-0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-17
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.6464281055546,-0.9076578138612019&fromPlace=41.68196668902734,-0.8869940756105218,&toPlace2=41.63347096180583,-0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-17
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.6464281055546,-0.9076578138612019&fromPlace=41.68196668902734,-0.8869940756105218,&toPlace2=41.63347096180583,-0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-17
http://193.144.226.70:9090/ita-ttnet-planner/planner-api/sharedtrips?&iduser=itaplanner&token=0DGDZOP63YHHPGB&routerId=zaragoza&bannedPlaces=&mode=,TRANSIT,WALK&maxWalkDistance=5000&bannedStreets=,&toPlace=41.6464281055546,-0.9076578138612019&fromPlace=41.68196668902734,-0.8869940756105218,&toPlace2=41.63347096180583,-0.8825523374818319&fromPlace2=&stairs=true&elevators=true&waitAtBeginningFactor=0.2&date=2014-10-17

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

72

idtrip The trip’id

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

73

10 Tracker API

10.1 Introduction

Interface usage: Web, App

Interface implementation responsibility: TELLU

The SmartTracker server stores user profiles and other account data needed for

tracking and system intelligence. Access to this data is provided by the SmartTracker Data

API (short name Tracker API). Both viewing of data as well as creation and modification

should is implemented by the web and mobile applications. The SmartTracker Data API is

a standard HTTP REST API, supporting GET, POST, PUT and DELETE operations. Data

is exchanged in JSON format.

Note that the documentation for the API is available online at the following URL:

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

Refer to this for the latest version, and for examples of the JSON data objects.

10.2 Account and authentication

All data access requires a SmartTracker account with the correct permissions. There

are two important terms regarding a SmartTracker account. The account itself is referred to

as a customer in SmartTracker terms. The data belongs to a specific customer, and will only

be available to users tied to that customer. A user is what defines authentication data

(username and password) and permissions. A customer account may have many users, with

different permissions controlling what they can do in the account. In addition, a customer is

owned by a service provider, and this is also specified in the API replies, but not important

for our use in T&Tnet.

For the T&Tnet system, there is a T&Tnet customer in SmartTracker. We have

chosen a single-customer approach because SmartTracker is a back-end in this project

rather than being accessed directly and because this simplifies setup and access. It is also

the best way to handle sharing of positions between friends, which although not done in the

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/Smarttracker+API+v3

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

74

final prototype, was part of the original specification for the Tracker server. Each user will

have an asset object in this account, which represents a tracked entity with preferences and

position, and a device object representing the mobile app as a source of sensor observations

to be associated with the asset.

Each API request must include an authentication token, supplied as an HTTP header,

which is tied to a user and is used in place of the username and password. A token may be

time-limited or not. For the T&Tnet prototypes, we have created one user for the Web

server and another user for the mobile app. Tokens with no time limitations have been

issued for these users, and given to the Web server and included in the mobile app

respectively.

For a commercial system, switching to an individual SmartTracker user for each

T&Tnet user can be considered, to increase security. A SmartTracker user will then need to

be created as part of each account creation process, and the token for the individual T&Tnet

user, possibly time-limited, can be stored with the Web account.

10.3 URLs and requests

This section describes the format of API requests and replies. The relevant resources

(data objects) are described in the next section.

10.3.1 URL

The URL consists of four parts: base (server address), customer, resource and id.

<base url>/<customer id>/<resource>/<resource id>

Retrieving only the root of the URL (without resource) will give an object describing

what resources are available.

Property Description

providers A list of service providers the user making the request can access.

customers A list of customers the user making the request can access.

access A list of available resources with a map per resource indicating

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

75

what methods that is available and whether the client is allowed to

perform them.

features A list of suggestions to the client to enable or disable features in

order to provide a simpler interface to the user.

user An object containing the id of the user making the request.

provider An object containing the id of the service provider of the customer

in the request.

customer An object containing the id of the customer in the request (or if the

customer id was not included in the URL, the customer associated

with the user).

time The time the request was handled.

10.3.2 Retrieving data

All data requests must be done with the HTTP method GET. All requests done on

resources will have the same properties in the response.

Property Description

result A list of resources matching the data request. This will always be a

list, even if the client requests a resource with a specific id.

total The total number of resources matching the data request.

offset Marker used to paginate the data.

max The maximum number of resources in each response.

user An object containing the id of the user making the request.

provider An object containing the id of the service provider of the customer in

the request.

customer The customer used as source of data in the request.

time The time the request was handled.

10.3.3 Filtering data requests

SmartTracker has a powerful filtering mechanism. Filters are added as parameters in

the URL. Multiple filters can be added, but a mechanism can only be used once per

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

76

property (latitude:less=59 and latitude:greater=58 is possible, but name:contains=e and

name:contains=m is not). All filters follow the same pattern.

<property name>:<filtering mechanism>=<filter value>

Filtering mechanisms Description

equals Usable on most data types.

contains Usable on string data types and some more complex types.

less Usable on number and date data types.

greater Usable on number and date data types.

Example Limit request to resources with ...

name:equals=Demo name equal to Demo.

name:contains=em the text "em" somewhere in the name.

latitude:less=59 latitude less than 59.

longitude:greater=11 longitude greater than 11.

timestamp:greater=2013-04-

18T00:00:00.0

timestamp after April 18. 2013.

timestamp:less=2013-04-20T00:00:00.0 timestamp before April 20. 2013.

10.3.4 Data content

When requesting data, not all data is included due to performance and bandwidth

reasons. When querying a list of data, only id and name is included by default. When

querying a single resource, all immediate properties are included (without any recursion).

Complex objects will (usually) include an id and name. This behaviour can be overridden

by adding a parameter to the URL named select. Select accepts a list of property names

separated by the character +. It also has two special values, star (*) and at (@). Star

includes all properties and all subproperties. At includes all properties but only the

minimum of subproperties (id and name).

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

77

Example

select=* All properties of the resource, and all

subproperties

select=@ All properties of the resource, but minimum of

data for subproperties

select=lastValidPosition+type Only lastValidPosition and type properties. Type

(a complex type) will only have id and name.

select=lastValidPosition+type.icon Only lastValidPosition and type properties. Type

will now also have icon as well as id and name.

select=type.* Only type. All properties of type will be included.

select=positionProvider.@ Only positionProvider. The immediate properties

of positionProvider is included.

10.3.5 Submitting data

Adding a resource must be done with HTTP method POST, without a resource id in

the object or in the URL. Resource objects are wrapped in a list to allow creating more than

one object in the same request.

POST <base>/<customer id>/<resource>

Updating an object must be done with HTTP method PUT, with a resource id in the

URL. In both cases the resource must a JSON object inside a JSON list in the request

payload. See each resource section for more information about which properties that are

required and valid values. The resource object is wrapped in a list to be consistent with

creating an object. If a property is omitted then it will not be changed on the server.

PUT <base>/<customer id>/<resource>/<resource id>

10.3.6 Deleting data

Deleting data must be done with HTTP method DELETE with a resource id in the

URL. The response if successful is an empty GET response (with HTTP code 200).

DELETE <base>/<customer id>/<resource>/<resource id>

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

78

10.4 Resources

Figure 11: SmartTracker domain objects

This section describes the SmartTracker resource types relevant to T&Tnet. The resources

are listed in alphabetical order, with relevant properties listed for each type. The figure

above gives an overview of the resources, with the main relationships. The central resource

type is asset. An asset represents an entity which is tracked, and is the primary object for

the reasoning engine. For T&Tnet, there will be one asset representing each user.

10.4.1 Alarm

An alarm is a notification that requires the attention of a user, usually generated by

the reasoning engine based on some rule.

Property Type Optional More info Filtering

name string - -

owner customer - -

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

79

dateCreated date - equals, greater,
less

lastUpdated date -

comment string - equals, contains

ackNeeded boolean - equals

logLevel integer - Degree of severity of alarm.
0 is most severe, -20 least. -
20 should be without
immediate notification.

equals, greater,
less

asset asset - Asset associated with the
alarm.

equals (id of
asset)

ackedBy user -

rule rule -

trigger position - The observation triggering
the rule/alarm, if available.

position position - The position of the related
asset when the alarm was
created.

zone zone - Zone relevant to the
triggering of this alarm.

-

10.4.2 Asset

The asset represents the person tracked by the system (the primary user). Most

important to the T&Tnet system is the properties field, where user preferences will be

stored.

Property Type Optional More info Filtering

name string NO equals,
contains

description string YES equals,
contains

owner customer - -

lastValidPo
sition

position - The most recent observation
with a valid position received by
the position provider of the

-

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

80

asset.

lastPosition position - The most recent observation
received by the position provider
of the asset. If the position is
valid this will be the same as
lastValidPosition.

-

groups list of
group

YES When creating or updating only
the id of the group will be used.

-

icon string - This icon is the icon set by the
asset's type.

-

image string - -

type type YES When creating or updating only
the id of the type will be used.

equals (id of
type)

tracked boolean YES If enabled all observations
received by the position provider
will be stored. Cannot be set to
true if the trackMode is "never",
cannot be set to false if the
trackMode is "always".

-

trackMode string YES "always" will always store
observations received. Rules
cannot change whether or not
the asset is tracked.
"never" will never store
observations received
permanently. Rules cannot
change whether or not the asset
is tracked.
"manual" depend on the tracked
property to determine if
observations are stored. Rules
can change whether or not the
asset is tracked.

-

properties list of
objects

YES Each property object has a
number of fields. “name” and
“value” are the primary ones for
reading, with the possible
property names being based on
the configured properties in the
asset's type. For writing, we
need to specify
“typePropertyIdentifier”, which is
a unique internal id for the
property.

contains

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/group

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

81

alarms list of
alarm

- The five most recent,
unacknowledged alarms. Useful
for creating lightweight clients.

-

positionPro
vider

tag or
device

YES When creating or updating only
the id of the object will be used.
The server will first attempt to
find a device matching the id
and if not found a tag.

equals (id of
positionProvider
)

10.4.3 Device

A device specifies a source of sensor data, and is assigned to an asset to provide

sensor data for that asset. In T&Tnet this is the app running on the user’s phone, although

adding additional sensor devices will also be possible.

Property Type Optional More info Filtering

name string

description string

owner customer

lastValidPosition position

lastPosition position

sensorDeviceType string

active boolean

uuid string

primaryProperties object

commandProperties object

additionalProperties object

10.4.4 Group

Assets can belong to groups, which may be useful for group logic (trigger rules for all

assets in a group).

Property Type Optional More info Filtering

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/alarm
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/tag
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/device

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

82

name string NO Any non-empty string. Cannot
be the same as any existing
group inside the customer.

equals, contains

description string YES equals, contains

owner customer -

assets list of assets YES

10.4.5 Position

The position of an asset (usually reported by a sensor device). We will mainly

encounter it as part of the asset data.

Property Type Optional More info Filtering

asset asset - equals

valid boolean - equals

latitude double - equals, greater, less

longitude double - equals, greater, less

accuracy integer - Estimated accuracy in meters equals, greater, less

speed integer - Speed as reported by device in
meter per second.

equals, greater, less

address string -

timestamp date equals, greater, less

properties object -

events list of
string

 -

10.4.6 Rule

A rule is a configurable unit of logic for the reasoning engine. The active set of rules

defines the service behavior. The data available through the API is mainly for viewing and

changing rule states (turn on and off).

Property Type Optional More info Filtering

https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset
https://telludoc.atlassian.net/wiki/display/SMARTTRACKER/asset

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

83

name string - equals,
contains

description string - equals,
contains

owner customer - -

status string YES "active", "inactive", "unknown", "stopped",
"failed", "requiresConfiguration". When
changing the status, only "active" or
"inactive" are valid inputs.

-

10.4.7 Type

Assets can be typed, with the type specifying what properties an asset has. T&Tnet

assets have their own type, specifying the user preferences.

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot be the
same as any existing type inside the
customer.

equals,
contains

description string YES Any string.

owner customer -

properties object YES Object where each key is a different
property name. Property value is an
object with at least two entries, type and
dataType. If the type is a list it must also
include a list of string called items. See
example.

10.4.8 Zone

Zones are used to define location-specific logic such as geofence (trigger a rule on

entering or leaving an area).

Property Type Optional More info Filtering

name string NO Any non-empty string. Cannot
be the same as any existing
zone inside the customer.

equals, contains

description string YES Any string. equals, contains

owner customer -

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

84

position latlon - An object with two entries,
latitude and longitude.

singleLevel boolean YES When checking if an asset is
inside, do they need to be on
the same floor.

floor integer YES Any number.

textual string YES Any string.

address string YES Any string.

points list of latlon NO List of objects with two
entries, latitude and
longitude. Must have at least
3 objects.

T&Tnet / AAL-4-032 D1.4/Final functional requirements and API Specification for

T&Tnet Services

85

11 Conclusion

This deliverable has presented the software architecture of the T&Tnet system, which

is the result of the initial analysis and iterative users’ evaluations, the respective technology

and expertise of the different partners and the ongoing work in the project. It constitutes a

very important document for the implementation of the two prototype iterations, as our

system is comprised of sub-systems built by different partners in different parts of Europe.

The API specifications are vital to the integration of the sub-systems, and have been

successfully implemented and used in the working system.

