

AMBIENT ASSISTED LIVING, AAL

JOINT PROGRAMME

ICT-BASED SOLUTIONS FOR ADVANCEMENT OF OLDER PERSONS’

INDEPENDENCE AND PARTICIPATION IN THE “SELF-SERVE SOCIETY”

D3.1

System Conception and Architecture Design

Project acronym: GeTVivid

Project full title: GeTVivid - Let’s do things together

Contract no.: AAL-2012-5-200

Author: PLUS, EVISION, IRT, ISOIN, USG

Dissemination: Public

AAL-2012-5-200 D3.1

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 6

1.1 INTRODUCTION AND COMPONENTS OVERVIEW ... 6

1.2 AGILE SOFTWARE DEVELOPMENT ... 7

1.3 LINK WITH THE OBJECTIVES OF THE PROJECT ... 7

2. SYSTEM ARCHITECTURE ... 9

2.1 ARCHITECTURE DEVELOPMENT .. 9

2.2 FIRST DRAFT .. 11
2.2.1 Iteration of the initial architecture sketch ... 11
2.2.2 System-wide authentication .. 12

2.3 SECOND DRAFT .. 13

2.4 THIRD DRAFT ... 15
2.4.1 Client-server communication ... 15
2.4.2 Authentication and authorization .. 16

2.5 ELABORATION AND IMPLEMENTATION OF THE THIRD AND FINAL DRAFT ... 19
2.5.1 REST APIs ... 19
2.5.2 Authentication and authorization .. 20
2.5.3 Used software .. 22

3. SYSTEM COMPONENTS .. 23

3.1 APPOINTMENT COORDINATION SYSTEM (USG) ... 23
3.1.1 System conception ... 24

3.2 PROFILING SYSTEM (ISOIN) ... 25
3.2.1 Profiler system description and integration ... 26
3.2.2 Profiling internal architecture .. 26
3.2.3 Data mining algorithms ... 27

3.3 ADDITIONAL FUNCTIONALITY (PLUS) ... 28
3.3.1 Conception ... 28
3.3.2 REST API ... 29
3.3.3 Message service ... 34

3.4 HBBTV CLIENT (IRT) ... 36
3.4.1 Platform high level architecture .. 36
3.4.2 Technical aspects ... 36
3.4.3 Second Screen Framework ... 38

3.5 MOBILE CLIENT (EVISION) .. 39
3.5.1 Client conception ... 40

 Page 2 of 98

AAL-2012-5-200 D3.1

3.5.2 Architecture overview of the mobile client .. 40
3.5.3 System overview without synchronization ... 41
3.5.4 System overview with synchronization .. 42

4. OVERALL CONCLUSION .. 44

REFERENCES ... 45

ANNEX A .. 46

ANNEX B - USER STORIES ... 51

TERMINOLOGY & ABBREVIATIONS

ACS .. Appointment Coordination System.

AJAX call Asynchronous JavaScript + XML is an asynchronous HTTP(S) call, implies
no reload of the browser window content (no blank screens or error
codes). The transferred data is encoded as JSON or XML.

API ... Application Programming Interface. It specifies how applications interact
with each other.

BOSH .. Bidirectional-streams Over Synchronous HHTP is an interface that allows
XMPP communication via HTTP and HTTPS.

Cake PHP CakePHP is a free, open-source, rapid development framework for PHP.
It’s a foundational structure for programmers to create web applications.

CalDAV ... Defines that the iCal format are used to structure calendar information
and how it may be transferred to, queried from, modified on, or deleted
from a CalDAV server.

Cross-Origin If the JavaScript tries request a url outside of the (sub)domain it is
located on, then it's called cross-origin or cross-domain call. It is usually
forbidden by the browser. There are some exceptions, though, like calls
to JSON resources.

CSS ... Cascading Style Sheets is a style sheet description language to define the
style of HTML elements (<tags>).

E.g. ... Example given.

Git / SVN Linus Torvalds distributed revision control system, named git (after
himself;), which is British English slang meaning "unpleasant person".
The man page describes Git as "the stupid content tracker"/Apache

 Page 3 of 98

AAL-2012-5-200 D3.1

SubVersion are programs that help to store different versions of files on
servers and clients.

HbbTV .. Hybrid broadcast broadband TeleVision.

HTML ... HyperText Markup Language is a markup language to structure
information.

HTTP .. HyperText Transfer Protocol is a protocol used by browsers and web
applications to get or post information in the world-wide-web.

HTTPS .. Like HTTP, but the data is sent encrypted.

JavaScript A programming language that runs on HbbTV-ready devices, HTML5
mobile applications and every modern web browser.

Jersey JAX-RS Java API for XML-based RESTful Web Services is a framework that allows
fast implementation of a REST API.

JQuery ... Javascript Query library is a framework that allows to write browser-
independent JavaScripts.

JSON .. JavaScript Object Notation. Open standard that uses human readable
text to describe objects for data exchange (usually) between client and
server.

OAuth 2.0 Open Standard for Authorization 2.0. One server stores credentials,
other servers or clients (services) may ask it, if the user is authenticated
and authorized to use a certain service. The big idea: A user only need
one account to use multiple services (e.g. log-in to Spotify with your
Facebook account).

PrK ... Private Key.

Prosody .. XMPP server implementation. Used in this project.

PuK .. Public Key.

RAML .. RESTful API Modeling Language is a YAML-based language that describes
RESTful APIs.

REST ... Representational State Transfer, basically a mapping from a HTTP address
(URL) to an object (e.g. calendar entry) or a process (like authentication
or creation of something on the server-side).

SQL .. Structured Query Language, a language that specifies how to query data
from a SQL server (e.g. MySQL).

SSF ... Second Screen Framework

STB ... Set-Top Box.

 Page 4 of 98

AAL-2012-5-200 D3.1

Strophe.js A JavaScript library that implements the XMPP protocol.

Test-driven Development One first writes the tests and then starts to code. One is finished if code
passes all defined tests.

Unit Tests Every piece of code is tested by an automated test, implies that every
little change in the code base has to pass the unit testing.

User-driven Development User first explains her expectations and then one starts to code.
Development is finished if code passes all defined user expectations.

Wire Frame A crude design sketch.

XML.. Extensible Markup Language is a format that is machine and human
readable. Like JSON, it is used to exchange data between client and
server.

XMPP ... Extensible Messaging and Presence Protocol defines client2server and
server2server communication, message formats etc. for instant and
multi-user messaging.

 Page 5 of 98

AAL-2012-5-200 D3.1

1. EXECUTIVE SUMMARY

This deliverable gives an overview in terms of system architecture and its subcomponents. Therefore, only

information necessary to understand the decision making process is presented. More in-depth technical details

and further documentation of the components can be found in the deliverable dedicated to each system part

(D3.2, D3.3, and D4.1).

1.1 Introduction and components overview

GeTVivid is a challenging project for software and system developers and software/system architects. For

example, the user-driven approach on one side demands flexibility from the development team and the

developed software modules, and as GeTVivid targets a specific end-user group (older adults with or without

mild impairments) that demands an easy-to-use, yet stable and secure system. Challenging is also to provide an

intuitive cross-platform User Management, handle the complexity of user-handling of the HbbTV Second

Screen Framework (SSF) (e.g., to “log-on” should be as simple as possible and as secure possible to the system).

In order to meet this requirements intense discussions happened between the team partners about which

components can be integrated in which kind to both remain flexible, when user demands change, and as

secure as possible, because, of course, the system/software components need to communicate over insecure

Internet communications channels sensible, if not sensitive information upon and about most user

interactions. The results of iterative system design and resulting architectural choices is detailed later on.

The competence and (existing or to be expanded/developed) components of the team partners formed the

basic starting point for the discussions and are sketched here in the following very briefly and also simplified to

provide basic understanding of GeTVivid and its componential structure:

• User and Task Management is central for a distributed communication system as for GeTVivid. All user

authentication, registration, authorization, and database - in general management - functionality is

provided by the ACS component, which is maintained and further developed by USG. Also the task

management interface is provided by the ACS component.

• HbbTV and SFF are the core features of GeTVivid when it comes to user interaction, where older

adults prefer TV sets and mid-sized tablets. The SFF component is maintained and further developed

by IRT. The TV interface is also developed and provided by IRT.

• Mobile interfaces to provide the SFF interface on tablets (for the typical older adults) and

smartphones (e.g., for young(er) relatives that want to stay in touch with their grandparents) are

developed and provided by EVISION.

• One key, yet practically invisible component will be responsible for the easy-of-use of GeTVivid

service, when it comes to user input. Whenever a user has to input something or has to take choices,

each and any suggestion (even proposing predictive assumption) are calculated and provided through

the profiling system component maintained and provided by ISOIN.

• Finally all of the above components need to communicate and exchange messages, coordinate and

synchronize, and have therefore the need for reliable and secure connections, which is the task of the

core component provided and developed by PLUS.

 Page 6 of 98

AAL-2012-5-200 D3.1

In the following it is detailed how the user-driven development approach has finally been implemented in

terms of development paradigm and system/software update cycles in order to provide have as much flexibility

as possible during the development phase.

1.2 Agile software development

All partners agreed that an agile development schema like Scrum will be used for the GeTVivid platform. This

agile approach is also reflected in the architecture, which has to be flexible enough to deal with all sorts of

changes that have to be possible and easy to apply.

The development is structured in so called Sprints. The requirements are defined in the form of User Stories

(see Annex B). Each User Story describes a functional feature of the platform from an end-user's perspective.

This means that the detailed technical requirements and interfaces have to be defined elsewhere. For that

purpose each technical telco starts with a Sprint Review and ends with a Sprint Planning session. During each

technical telco tasks for all technical partners are defined. Those tasks are to be completed until the next

technical telco. The time span between two technical telcos, therefore, defines the length of each Sprint

(typically one month). After a User Story was selected (based on priority) all technical partners discuss

necessary APIs and schedule additional telcos to work out the details. The Sprint Reviews are used to reflect

the development progress.

1.3 Link with the objectives of the project

A good fundament is the base for every successful building. That said, the development of a suitable solution

for the architecture design is the fundament on which all the technical developments are based upon. Before

the actual architecture was decided upon, there were several rounds of brainstorming and various ways of

approaching the actual tasks. More about these steps can be found in sections 2.1. to 2.4. See an example of a

brainstorming table in Figure 1.

The user and business requirements from T2.2 and T5.2 are transferred into technical requirements for the

soft- and hardware development in the WP3 and WP4. This is done by defining high-level scenarios and use-

cases (see Annex B / User Stories), which is the usual approach in a Scrum-like development framework. This

forms the basis for the definition of the system architecture and the necessary components. Furthermore, a

detailed system design is developed in order to specify the communication flows, first interfaces and protocols.

The end-user device (TV, STB, mobile, tablet, etc.) specifications are done in this task. They can be found in

sections 3.4 and 3.5 or in detail in the corresponding deliverable (D3.2 and D4.1).

The latest prototypes are hosted on https://demo.getvivid.eu/ and http://getvivid.amiona.eu/.

 Page 7 of 98

https://demo.getvivid.eu/
http://getvivid.amiona.eu/

AAL-2012-5-200 D3.1

Figure 1: Brainstorming sketches of possible architecture and devices

 Page 8 of 98

AAL-2012-5-200 D3.1

2. SYSTEM ARCHITECTURE

This section documents the development process of the GeTVivid platform's system architecture. Following

subsections describe the iterations, which were necessary to find a suitable architecture.

SCRUM has one big potential disadvantage for the system architecture, which is that in the end parts of the

architecture might be more complicated that they have to be, but we will always keep an eye on this (i.e.,

changes introduced by the feedback of end-user evaluations or by business requirement analysis will be

carefully reviewed).

2.1 Architecture development

Even before the actual start of the project, the soon to be members of the consortium were discussing the

possible architecture of the concept. Few but important points were identified, defined and found their

condensation in the first draft of the desired system architecture (see Figure 2). There will be multiple parties

involved. The end users can be categorized into the older adults, the relatives and professional service

providers. Business partners of the platform itself will most likely be suppliers of external information channels

and broadcast companies, which have to deliver the HbbTV content to the end-user's home and TV set.

Starting from the first glimpse the basic team / consortium developed further ideas and concrete conceptions

of how the basic architecture could look like – still not taking into consideration the state of the art products

and technology available today. A crude separation into system components and dedicated frontends for

different end-users are already visible in Figure 3. A TV and a Mobile client constitute the frontend for the main

system users, the older adult. Separate frontends are already defined for professional service providers,

relatives and the platform operator. There were already several decisions that can be made based upon this

plain sketch. Firstly, both TV and Mobile client will have to perform very similar tasks. Both could use the same

API to communicate with the backend.

Secondly, there are several configurations for the end-user's interaction with the system. Those configurations

have later been defined as profiles. D3.2 describes those profiles in detail. It defines the Broadcast Profile (no

Internet connection; one-way), the Interactive Profile (Internet connection and broadcast) and the Interactive

Profile with a Second-Screen (e.g., a tablet). It was decided that the primary development focus will lie on the

latter, because it offers the highest amount of functionality and is therefore the most complicated to

implement. The previous two profiles are more or less functional subsets and can be derived from the

Interactive Profile with Second-Screen.

 Page 9 of 98

AAL-2012-5-200 D3.1

Figure 2: The first idea of a future concept and architecture

Figure 3: Logic layout and aggregation

 Page 10 of 98

AAL-2012-5-200 D3.1

2.2 First draft

The first draft is the initial attempt to combine all technologies used by the project partners in their existing

components. Those components include: the Appointment Coordination System (ACS, developed by USG), the

Second-Screen Framework (SSF, developed by IRT and used for Second-Screen Interaction) and existing open-

source software, which would fit the project's needs. A top-down analysis of the involved components led to

some rather obvious technological choices:

• Since the SSF runs as a JavaScript Library it makes sense to implement the mobile application as

HTML4.1/HTML5 application. Furthermore, the HbbTV standard only supports a subset of the HTML

Standard (CE-HTML) and again JavaScript, so the communication via HTTPS with the server is the

feasible and safest solution.

• This implies a HTTP interface on the server side. At the Kick-Off Meeting the use of JSON as exchange

data format was discussed, which seemed to be best alternative, since JavaScript and most other

programming languages offer native functions or methods to encode and decode JSON.

• Figure 3 shows that all backend components unrelated to appointment coordination can be developed

separately from the ACS. Still, it was unclear if the other sub systems could be developed

independently. The lack of detailed requirements slowed down the decision process.

• PHP is proposed by PLUS for initial rapid prototyping of possible backend features. JSP and Ruby On

Rails were also discussed shortly but were disqualified. ISOIN suggested CakePHP as framework,

because they had positive experience in past projects.

2.2.1 Iteration of the initial architecture sketch

The product of the initial decisions, the first logical architecture sketch is displayed in Figure 4. For clarification,

the colours only signalize logical groups. Dark red stands for external services, which may or may not be used

by the GeTVivid application. At this point it is not predictable, if there will be a need to access the APIs of social

networks like Facebook or Google+. Grey are software components and implementations that are already

available. These will be discussed below. Green symbolizes the GeTVivid Core Logic (roughly based on Figure 3).

 Page 11 of 98

AAL-2012-5-200 D3.1

Figure 4: Architecture draft - a functional hierarchy of possible system parts.

For rapid prototyping it would make sense to implement the whole Core Logic as CakePHP application. It is

easily to extend with functionality and already contains basic primitives for permission and user management.

CakePHP uses the Model-View-Controller (MVC) design pattern, which would allow to use the same models for

the JSON API (used by TV and Mobile Client) and for the Operator/PC frontend. The different interfaces would

be implemented as different Views. This design concept would also enable the developers to bring the

administrative interface to mobile devices by simply replacing the Views. This was the state of the architecture

in September 2013.

2.2.2 System-wide authentication

At the technical meeting in Munich in January 2014 the integration with the ACS was discussed. It was soon

clear, that the ACS user database was the point to start and that the first step would be to find a feasible

solution to authenticate users in the system in a secure manner. The biggest challenge will be the Cross-Device-

SSO, which is necessary for a good user experience. Figure 5 displays the first idea of how to implement this

feature. It is not elaborated here, because after another discussion OAuth 2.0 was considered a possible

standard to use for user authentication. It was decided that the ACS will provide an OAuth 2.0 authorization

server for the rest of the system.

 Page 12 of 98

AAL-2012-5-200 D3.1

Figure 5: Second-screen login

2.3 Second draft

After some research on available software libraries and components PLUS came up with following proposal for

the technical project meeting in March 2014. Figure 6 shows a possible logic representation of the proposed

changes to the first draft. This iteration already integrates the OAuth2.0 authorization logic and communication

paths. Furthermore, a REST API is suggested as interface for all client applications (Mobile, HbbTV and Web

client).

 Page 13 of 98

AAL-2012-5-200 D3.1

Figure 6: Proposed components

Here is a list describing the most important characteristics of the proposed architecture scheme:

• HbbTV and Mobile client are responsive web/HTML applications. After the applications are

downloaded to the client all communication takes place via asynchronous HTTPS calls. The benefits

are a user friendly error handling (no empty screens or error codes) and a clear separation of server-

side business logic and client-side user interface code.

• For the server-side PLUS proposes a REST API, which can be used by the HbbTV, Mobile and even Web

client.

• The Web client is also a responsive web application. It is jointly decided to use the existing user

interface of the ACS and modify/extend it with the required additional functionality. Communication

with the core platform logic is therefore accomplished with AJAX calls, which again makes use of the

REST API.

• The communication between ACS and core platform are implemented as calls to each other’s REST

API.

• Since the ACS already has a user database/management it is obliging to store the central user

database on the ACS server. Authentication and authorization are therefore also managed by the ACS.

OAuth 2.0 meets the basic requirements for our client-server architecture.

• For instant messaging, mailing-list functionality, multi-user chats etc. XMPP are used. The existing

libraries are well tested and allow an easy integration into the client-side code. The communication

with HbbTV, Mobile and Web client will make use of a BOSH interface (HTTPS communication).

 Page 14 of 98

AAL-2012-5-200 D3.1

• For the storage of calendar data (events, todos, reminders etc.) CalDAV could be an option. It supports

complex calendar information and access through external clients or synchronization with external

sources. Various implementations for the CalDAV standard already exist. Storage, modification,

filtering etc. are therefore already implemented by the existing libraries.

Benefits of this architecture are:

• The server-side business logic of core platform or ACS may be changed without interfering with the

REST interface and client-side code.

• A REST API allows the integration of third-party services (apps inside the system). XMPP and CalDAV

allow communication with external clients and resources.

• A REST API may be tested separately from clients and user interface.

• The consequent usage of the same techniques (REST API, OAuth, XMPP etc.) allows code reuse on the

client-side. There will be only one library for OAuth2.0 and one to access the core platform logic/ACS

logic on the client-side.

• Changes in the user interface design will not affect the server-side code and may be executed by the

user interface developers on a separate code base.

• All three clients will make use of nearly the same technologies (HTML, CSS, JavaScript), hence know-

how transfer is easy and possible.

The draft and most of the proposed technologies were discussed during the technical meeting in March 2014.

The CalDav components were replaced with the calendar of the ACS since it already used the iCal standard. The

XMPP standard was new to most of the technical partners. Thus, it needed further investigation, before a final

decision was made (see next section). The rest of the design was considered a step in the right direction.

2.4 Third draft

2.4.1 Client-server communication

Based on the discussion in the meeting in March another draft was created which takes care of the cross-origin

problem that HTML applications usually have (see Figure 7). The idea of a HTTPS broker or proxy was

introduced in order to create one backend for client-server communication. Furthermore, a reverse proxy kept

the architecture quite flexible, which was still necessary, because most of the interfaces were undefined or the

subject of current discussions.

A dedicated development and demo server was hosted by PLUS equipped with the necessary certificates to

create a secure communication channel with the clients. The green arrows in Figure 7 show requests made by

the Mobile client. Same goes for the HbbTV client in blue and the Web client in yellow. All connections from

and to demo.getvivid.eu, the demo server, are secured with SSL encryption. One security question remaining at

this point is the SSF communication channel. The SSF is hosted by the IRT and is only available as a service. It

therefore cannot be further integrated into the proxy architecture. The SSF uses JSONP to avoid cross-origin

 Page 15 of 98

AAL-2012-5-200 D3.1

errors. As this way of communicating is not as common as one might thing, it is not entirely clear how secure it

is. For that reason JSONP will be further investigated regarding security issues. Also other possibilities like

point-to-point encryption will be discussed. In any case, the channel will be encrypted in one or the other way.

Figure 7: An idea of how client-server communication could take place

2.4.2 Authentication and authorization

Figure 8 displays an authentication and authorization scheme based on OAuth 2.0 proposed by PLUS, which is

elaborated below. Basically the client (HbbTV or Mobile client) performs a log-in on the OAuth2.0 authorization

server and receives an Access Token at the end of the procedure. This Access Token is then used by the client

to access (REST) APIs provided by the resource servers (see components in section 3 of this document). The

figure bellow tries to visualize which components have to communicate to allow only authorized users access

to protected resources.

 Page 16 of 98

AAL-2012-5-200 D3.1

Figure 8: OAuth 2.0 components with information encoded in access tokens.

The components shown in Figure 8 were analysed with following outcome:

Authorization server: One central OAuth 2.0 authorization server takes care of the user authentication and

authorization. For the initial phase of the project the authorization server only knows one authorization scope:

DEFAULT. This server is provided by the ACS platform.

Clients: In the current system draft two OAuth 2.0 clients, one for mobiles and one for HbbTV conform devices,

communicate with the GeTVivid platform's servers.

Permanent log-in: To allow a permanent log-in, at least one of the clients would have to store the refresh

token (which is valid until the next access token is requested). An alternative would be to store username and

passwords in the client’s memory, but this is clearly not an option, because this would expose the user's

credentials to certain attacks.

Log-in sharing

• Option A: Log-in sharing can be accomplished by sharing the temporary access token. Since both

clients should be as independent as possible, the refresh token has to be shared too. The refresh

token is special, since it may only be used once. Thus, this implies that one of both clients has to act as

master, which retrieves a new access token once the old one has expired.

The token exchange could look like this: The first device turned on uses the stored refresh token to

retrieve an access token from the authorization server. The second device on-line has to ask the first

one via the SSF if a valid access token is available. The first one responds with the access token AND

the refresh token. Once one of both clients is turned off, the other one is able to take over the

position of the master client and take care of the token refresh business.

Following issues are not resolved by this option:

o What happens if the retrieval of a new access token fails?

o What happens if the master is turned off before it can communicate the new refresh and access

token?

 Page 17 of 98

AAL-2012-5-200 D3.1

o What happens if the master is off-line while the former slave is turned on? It would still have an

invalid refresh token in its cache.

• Option B: Implement a server-side API to copy the session of the current user to another client. An

easy solution is to simply respond to a token refresh request with two refresh tokens if a certain

request parameter is given. The second refresh token is sent via the SSF to the second client. Security

measure: Only allow two valid refresh tokens per user at each point in time.

Once the refresh token was successfully duplicated most of the issues mentioned in option A are

resolved. Even if the retrieval of a new access token fails, the client can still request a new refresh

token from the second client.

Furthermore, option B seems to be the development-wise most efficient solution.

Resource servers

There are several distributed OAuth 2.0 resource server involved in the GeTVivid platform. Those are ISOIN's

profiling sub system, USG's ACS service provider platform and PLUS' resource server application for all

additional functionality. Apart from the authorization system there is also IRT's SSF server, which does not need

any valid ACS session. Therefore, it is not considered as an OAuth 2.0 resource server. Each resource server

needs to know

o if a given access token is (still) valid (expired),

o to which user a given access token was issued (to store user specific data),

o and which scopes are accessible with a given access token?

Again, there are two possible approaches:

• Option A: With the current implementation an API to get the information mentioned above has to be

specified (from the authorization server). Of course, such a request slows down the whole system, if

every request to a resource server results in another request to the authorization server. Thus, it is

necessary to store each access token in each resource server's database. This introduces following

problems:

o The risk of potential data leaks is increased in case any of the resource servers is compromised.

Each access token allows access to all parts of the system (at least to the parts specified by the

scope parameter and for the specified time frame). From the security perspective an access token

is therefore nearly as sensitive as the user's credentials. Thus, the access tokens should be only

stores as hash values.

Following issues are not resolved by option A:

o Each new access token causes at least one additional request to the authorization server issued by

each resource server accessed with this token.

• Option B: Encode the corresponding user id and user name, client id, scope and expiration date-time

into the token. This can be accomplished by using a public key encryption algorithm. All resource

servers may share one public key for decryption. The authorization server uses the private key for

encryption. The Base64 algorithm can be used to transform the resulting binary data into an ASCII

string and vice versa.

 Page 18 of 98

AAL-2012-5-200 D3.1

Implications:

o There is no need for token validation, which happens implicit if the token can be decrypted with

the public key.

o There is no need for the resource server to store the tokens locally. This eliminates the risk of a

potential data leak.

o Protected resources are as secure as the private key.

Although option B is the solution with less traffic overhead, it is the more expensive implementation

regarding development costs. See the next section for a final decision.

2.5 Elaboration and implementation of the third and final draft

2.5.1 REST APIs

The final draft of the REST communication architecture introduces a client-server communication library, which

provides a JavaScript interface that can be used by both the Mobile and the HbbTV client.

The final service setup is described below:

• The reverse proxy: Due to the nature of REST APIs (as implemented by the ACS API and as proposed

by the Profiling API) different HTTP methods are needed for communication (POST, GET etc.). In

previous telephone conferences JSONP was discussed for client-server communication, which would

only allow HTTP GET requests. Thus, a reverse proxy is the next best alternative. Furthermore, the

reverse proxy can be updated with a load balancer, if necessary and it can also take care of SSL

encryption of the client-server communication for all services hosted on the same host.

Figure 9: Final version of REST architecture

 Page 19 of 98

AAL-2012-5-200 D3.1

PLUS installed an Apache Reverse Proxy, which maps the incoming requests based on path prefixes (/isoin,

/plus, /usg, /static) to the different back-ends. A call to the ACS API looks like:

https://demo.getvivid.eu/usg/v1/oauth2/auth. Right now it is not decided if the Web Client will use the REST

APIs too. But it should be pointed out, that this architecture allows extending the GeTVivid platform with other

client applications without much overhead.

Forwards marked with green colour will be local forwards (see Figure 9). Red colour indicates a remote

connection which will be secured by HTTPS. In the technical tel. Conference in June 2014 all attending partners

agreed to this setup.

• Profiler REST API (see section 3.2 for details): According to the documents presented in March 2014

the Profiling API is protected by HTTP Basic Authentication and will only be accessible to other

backend components. The communication will take place via HTTPS. The profiler runs on a dedicated

Tomcat instance on demo.getvivid.eu.

• ACS REST and OAuth 2.0 API (see section 3.1 for details): The ACS provides an OAuth 2.0 API.

Endpoints necessary for the OAuth 2.0 procedure are again forwarded by the proxy to avoid any cross-

origin errors. For further details see the section 3.1.2.5. A dedicated GeTVivid ACS instance runs on a

server provided by USG

• Additional functionality REST API (see section 3.3 for details): PLUS develops all endpoints necessary

for integration and for functionality not covered by the ACS. Communication will again take place via

HTTPS. It will run on a dedicated Tomcat instance on demo.getvivid.eu.

• Second-Screen framework (see section 3.4.3 for details): The SSF is hosted as a service by the IRT.

• Static content: The host demo.getvivid.eu also provides a static HTTP server to serve static data like

the HbbTV and Mobile client.

2.5.2 Authentication and authorization

The final iteration of the authorization and authentication scheme is depicted in Figure 10. All resource servers

of the system use a REST endpoint to verify each new access token and to retrieve relevant information to limit

or allow access to certain resources. The endpoint returns following information on a given access token (see

Listing 1). This version of the authentication scheme now displays detailed communication paths including the

information transported.

 Page 20 of 98

https://demo.getvivid.eu/usg/v1/oauth2/auth

AAL-2012-5-200 D3.1

Figure 10: OAuth 2.0 components with a token validation endpoint.

{

 "client_id":"oapYn78sDWAbzy5NZwiy", /* for future use */

 "user_id":"123456789", /* ACS user id */

 "scope":"DEFAULT", /* for future use */

 "expires_in":436 /* seconds */

}

Listing 1: Information returned by token validation endpoint

Resource server

This iteration of the scheme comes with details on the implementation: Tokens and related information are

stored in the resource server's local token cache in order to minimize the number of validation requests. Once

a token is expired it is automatically removed from the cache.

All requests to the profiler, the XMPP server resp. the BOSH interface and the additional functionality are

handled in the form of a central implementation of an authentication resource filter (these components are

filled with blue in Figure 10).

The resource server that contains all ACS features (filled with green in Figure 10) uses its own implementation

of a resource protection. The web interface uses a session based log-in. The REST API has access to the OAuth

2.0 authorization server and its database.

 Page 21 of 98

AAL-2012-5-200 D3.1

Authorization server and clients

The ACS provides an OAuth 2.0 authorization server. HbbTV and Mobile client act as OAuth 2.0 clients. More

details have been discussed in the previous section (see section 2.4.2). At this point multiple possible ways to

accomplish login sharing have been discussed (see previous section). All seem feasible, but the implementation

is subject of a user story, that has yet to be implemented.

2.5.3 Used software

This section lists installed software packages and configuration, which were needed to implement the

architecture described in the previous sections.

• Operating system of demo.getvivid.eu: Debian Wheezy (7.6) with kernel 3.2.0-4-amd64 and root

access.

• Web server (Tomcat7, Apache2): Since the HbbTV specification uses HTTP(S) for communication, a

web server is needed. Apache2 is installed and configured as reverse proxy server. There is also a

static web server included in the Apache installation for HbbTV and Mobile client.

At this point Java is the preferred programming language. Thus, Tomcat7 is installed and multiple hosts are

configured. One instance is used for the profiling deployments and one is used for the additional functionality.

• Certificate: A list of root certificates valid according to the HbbTV specification can be found here:
https://www.hbbtv.org/spec/certificates.html. Since the domain is already hosted by GoDaddy, the
certificate was also purchased there.

• XMPP Server/Prosody: A Prosody (see http://prosody.im/) XMPP server with a BOSH interface is
installed and configured. The ACS OAuth 2.0 interface is used to authenticate users. There is also a
static contact list for all development team members, which contains each members contact. All data
is stored in a MySQL database.

 Page 22 of 98

https://www.hbbtv.org/spec/certificates.html
http://prosody.im/

AAL-2012-5-200 D3.1

3. SYSTEM COMPONENTS

The GeTVivid platform is composed of several subcomponents, which either have been in development since

before the project started or have been developed especially for the project. This section contains these

components and elaborates their individual development goals. Please note that each section has been written

by the partner developing the named component. Therefore, the focus and goals of the development may

vary. Since two of the technical partners are companies of the private sector (EVISION, ISOIN) and the other

three have an institutional background (IRT, PLUS, USG), it should be understandable that the prerequisites for

each partners contribution are very different and so is the product.

The previous section gave an idea of how the following components are connected and which means of

communication are possible. The ACS (see section 3.1) is basically the core component as it includes the

GeTVivid platforms central user database. The other two back-end components, the profiling system (see

section 3.2) and the additional functionality (see section 3.3), rely on the ACS and therefore depend on its data

structures and APIs. The two front-end components exclusively developed for the GeTVivid platform, the

HbbTV (see section 3.4) and the Mobile client (see section 3.5), communicate with the backend's REST APIs.

3.1 Appointment Coordination System (USG)

Appointment Coordination System (ACS) from the Competence Centre for Independent Living at the University

of St. Gallen is a hosted solution for a broad range of electronic service marketplace scenarios. Besides basic

functionalities like user account management, a search function, or an iCal feed based calendar integration, the

main difference between the mentioned scenarios is based on varieties in the request mode, such as:

• Consumer triggered – normal request: A request for a certain service and date (including the time)1.

• Consumer triggered – request without date: A request for a certain service but without specification of
the desired date. Providers are expected to answer such requests by suggesting 1 to n possible dates2.

• Provider triggered – fixed date confirmation: An appointment is directly entered by the provider
without requiring any interaction from consumers3.

• Provider triggered – multiple date suggestions: 1 to n possible dates are suggested by the provider
without having a preceding request from a consumer4.

The following (sub-) sections give a first, brief overview about the concept and architecture design behind ACS.

More details can be found in deliverable D3.3 (Service Platform).

1 The normal form of a request which is helpful if the chance of striking a free time slot at the provider’s side is
not too bad.
2 Useful if the provider is comparatively busy.
3 This approach can be used when a consumer is requesting a service outside of the integrated process
environment or channels. The message from the provider to a consumer can be considered as a booking
confirmation.
4 Might e.g. be used for periodically repeated services where a provider reminds its customers in order to
increase customer loyalty.

 Page 23 of 98

AAL-2012-5-200 D3.1

3.1.1 System conception

3.1.1.1 Basic architecture

In general, there are three components respectively three layers involved when it comes to utilizing ACS (see

Figure 11). The first and most important layer is the backend of the system, which encapsulates the data

structure and process logic. The frontend as second layer is in comparison to the backend rather a collection of

multiple user interfaces, such as the normal web-interface or, more specifically for GeTVivid, the HbbTV

interface. The client layer as last tier is not necessarily part of the actual ACS or GeTVivid platform. It represents

any solution that is necessary in order to visualize what has been defined on the frontend layer. For a simple

web-interface this might be a browser. However, there might be additional scenarios where this layer contains,

e.g., container-apps or embedded functionalities.

Figure 11: ACS Basic Architecture

3.1.1.2 Backend

In order to follow the principles of modularity, adaptability, and extensibility, the main components resp. layers

of ACS are loosely coupled. The first and most important layer is the backend, which contains among others the

main process logic of the application. Parts of this process logic might also be available in frontends in a

redundant manner, but the power of ultimate decision about the validity of process steps is located in the

backend. Whenever information has to be stored resp. made persisted or has to be accessed, a data object

model approach is used in order to access MySQL resources.

In order to seal both data storage and process logic off, the only way to access backend resources is via REST

web-services. This interface, however, is not completely open to all possible applications (and hence

“frontends”) at the moment, but limited to pre-registered ones. Additional information might be found in

section 3.1.2.5 as well as in deliverable D3.3.

3.1.1.3 Web-Frontend

ACS supports multiple frontends for a single tenant, whereas a tenant represents e.g. a project like GeTVivid.

One frontend that is available by default is the standard ACS web-frontend. It includes workspaces for both,

(professional) providers and consumers. However, in the context of GeTVivid the web-frontend will primarily

be used by providers.

 Page 24 of 98

AAL-2012-5-200 D3.1

Generally, a frontend can be considered as an UI-building control, which may utilize all available REST web-

service functionalities and translate the results resp. the data usable representations. In terms of the standard

web-frontend this means, that from REST requests resulting data is transformed in HTML5 code which is

provided to the consumer via webserver. Parallel to this approach, raw datasets are provided for asynchronous

request that are rendered within the client application.

3.1.1.4 Client

The third layer of ACS, the client application, should be understood in a more abstract manner. In contrast to

other components, this layer might in some cases just be a standard application, e.g. a web browser. However,

in the context of GeTVivid this might be an application (possibly even an embedded one) running on a HbbTV

device and enabling channel and program independent functionalities.

3.1.1.5 ACS OAuth REST interface

The ACS OAuth interface can be used in order to implement a secure delegated access to the resources resp.

the data of a certain ACS user. Since all requests have to be made on behalf of such a user, the user’s

credentials are required. The inversion of this argument is that the OAuth REST services cannot be used in

order to perform standard platform operations like requesting the name for a given user ID (except it is the ID

of the user that is represented by the OAuth access token). For more details on the system authorization

process and the integration with other components refer to section 2.5.2 and D3.3.

3.2 Profiling system (ISOIN)

A profile is a description of a person with the most important or relevant information about him or her. In

software applications the profile is obtained from the users to complete the user profile, also called user model

containing essential information about the user. The creation of these profiles let the system know the

differences between users to offer personalized services for each one.

User profiles are different depending on the domain of the application. For example, in a music website, the

domain will cover the songs and groups that the user likes and also genres. In the case of a dating page, the

user profile will contain other information like age, sex, hair colour, eyes colour, personality traits, and much

other important attributes.

Not only the content of user profiles differs from one domain to another, but also how the information they

contain is acquired. The content of a user profile can be explicitly provided by the user or it has to be learned

using some intelligent technique. User profiling implies inferring unobservable information about users from

observable information about them, that is, their actions or utterances. A wide variety of Artificial Intelligence

techniques have been used for user profiling, such as case-based reasoning, Bayesian, association, genetic

algorithms neural networks, among others.

The purpose of obtaining user profiles is also different in the various areas that use them. A few examples:

• In adaptive systems, the user profile is used to provide the adaptation effect. That is to behave
differently in different situations.

• In intelligent agents, particularly in interface agents, the user profile is used to provide personalized
assistance to users with respect to some software application.

 Page 25 of 98

AAL-2012-5-200 D3.1

• In intelligent tutoring systems, the user profile or student model is used to guide students in their
learning process according to their knowledge and learning styles.

• In e-commerce applications the user or customer profile is used to make personalized offers and to
suggest or recommend products the user is supposed to like.

• In knowledge management systems, the skills a user or employee has, the roles he takes within an
organization and his performance in these roles are used by managers or project leaders to assign him
to the job position that suits him.

• In recommender systems the user profile contains ratings for items like movies, news or books, which
are used to recommend potentially interesting items to him and to other users with similar tastes or
interests.

3.2.1 Profiler system description and integration

GeTVivid Profiler System provides a RESTful API that can be consumed by any REST client in order to allow

integration with other modules of the GeTVivid platform. This API exposes a resource named "profiler" through

GET and POST methods, receiving as input a XML document described by a XSD schema. API response includes

an XML document with a useful error code\message. GeTVivid Profiler API is secured by SSL (HTTPS) using Basic

Authentication. API is stateless so all request must be authenticated.

Interaction between the GeTVivid platform and the profiler module is shown in the picture below. Core

functionalities of the profiler system are exposed on a REST interface and information is sent and received over

XML files. The profiler system is a Java web-based application, so it must run on an application server or a

servlet container as Tomcat (see Figure 12).

Figure 12: Profiler system

3.2.2 Profiling internal architecture

Figure 13 below shows the internal architecture of the profiler system and its interactions with the rest of the

system. First you can find the API methods to put (POST) and retrieve (GET) information; these two methods

are the in/out points of the profiler system. By using the POST method, the GeTVivid platform will add data to

 Page 26 of 98

AAL-2012-5-200 D3.1

the profiler database, which will be used to make the profiling of the user. These data are stored on the

database for further and deeper analysis using data mining techniques such as K-nearest neighbour,

classification and clustering.

With these techniques, profiles can be extracted from the users which let the system to create models of the

users and their behaviour as well as rank the services. With all this information the system will use another

module which is responsible for creating new recommendations for the users, look for similar services or look

for certain user behaviour patterns.

Finally these recommendations, suggestions, alerts, etc. can be retrieved from the profiler system by using the

GET method; this request must include a definition of the request service (name of the service, and required

parameters) inside an XML file.

Figure 13: Profiling internal architecture

3.2.3 Data mining algorithms

Data mining algorithms are the CORE module of the profiler system, although it is still in the development and

improvement, current version (V.0.2) includes the following data mining algorithms:

• Classifier Methods
o J48 (inherit from V.0.1)

• Clustering Methods
o Simple K-means J48 (inherit from V.0.1)

• Association Methods
o Apriori

• K-nearest neighbourhood

 Page 27 of 98

AAL-2012-5-200 D3.1

For the GeTVivid project, the use of data mining and profiling impact will consist of obtaining personalized

services for the users, giving suggestions about related services to the more often used by the users and

suggesting groups or activities to join similar to the user, or her/his preferred activities. This means a friendly

environment focused on the user who will feel more comfortable with the GeTVivid platform.

Since the description of the used profiling algorithms is very generic and not specific to the GeTVivid project,

but non the less very important for understanding the scope of the project, a detailed description is available in

Annex A.

3.3 Additional functionality (PLUS)

The additional functionality covers all services that are needed in addition to the ACS. As defined above, the

ACS is the central component, because it includes the user database and management. The additional

functionality includes REST endpoints for profiler integration and for messaging (including group and contact

management). Since there is no dedicated deliverable for this part of the system, the description below is more

detailed than the description of components with dedicated deliverables (e.g. ACS). The REST endpoints

introduced in this section are designed for the HbbTV and Mobile client. Furthermore, a JavaScript library to

communicate with the REST services is continuously developed and updated. It is used by the HbbTV and

Mobile client.

Figure 14: Layer conception of additional functionality servlet.

3.3.1 Conception

The additional functionality covers all services that are not implemented in the ACS. The corresponding

requirements are defined in user stories 08.01. - 08.04. (see Annex B), namely user story 8.1 covers one-to-

many chat functionality, 8.2/8.3 automatic system notifications and 8.4 contact and group management.

Furthermore, the additional functionality takes care of the integration of the profiling components into the

authorization scheme. Each endpoint, that requires a valid user account, validates the access token sent in a

header field of the incoming HTTP request. Figure 14 shows the basic architecture of this REST service. It can be

divided into REST API, Business Layer and Persistence Layer:

 Page 28 of 98

AAL-2012-5-200 D3.1

• The endpoints are implemented in a Tomcat7 servlet. The REST API is based on the interfaces and
annotations defined in the package javax.ws.rs. Currently Jersey 2.* is used, which is the JAX-RS
reference implementation. The access token validation and local caching is implemented as JAX-RS
ResourceFilter. It can be activated by simply adding the Annotation @Authenticated to an endpoint
definition.

• The business logic mainly contains filters and code for creation and modification of entities as well as
searching and returning entities from the database.

• Hibernate was chosen as framework for the service's persistence layer. Hibernate is a popular JPA2
implementation. The persistence layer communicates with the local database as well as with the ACS
remote database.

3.3.2 REST API

3.3.2.1 Endpoints related to message service

Listings 2 and 3 show a generic HTTP REST interface for searching and listing entities from the persistent data

storage. The interfaces can be reused for all types of entities. The SecurityContext is automatically injected. It is

created in the authentication filter and contains information associated to the given access token. This also

includes the user's ID.

Anyone familiar with JAX-RS REST APIs will notice, that the interfaces define the return type String and not an

object type, which would then be mapped by an object to JSON processor (e.g. Jackson). But to avoid

serialization conflicts during the conversion, which would occur when mapping Hibernate DTOs to JSON strings,

the conversation is done with a dedicated method in each DTO/POJO.

@Path("search")

public interface ISearch {

 /**

 * Search for T

 * @param search query

 * @param limit

 * @param offset

 * @param securityContext

 * @return list of T with MetaInfo

 */

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public String search(@QueryParam("q") String query,

 Page 29 of 98

AAL-2012-5-200 D3.1

 @QueryParam("offset") int offset, @QueryParam("limit") int limit,

 @QueryParam("sort") String sort,

 @Context SecurityContext securityContext) throws SearchQueryException;

}

Listing 2: Generic interface for HTTP REST search service

@Path("details")

public interface IDetails {

 /**

 * Details of T

 * @param idList

 * @param securityContext

 * @return list of detailed information about T with MetaInfo

 */

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public String details(@QueryParam("ids") String idList,

 @Context SecurityContext securityContext) throws DetailsException;

}

Listing 3: Generic interface for HTTP REST details service

Besides the requested payload the responses also contain meta information about the response. The meta

information can be defined for each entity type. I usually contains the time it took server to process the request

and to generate the response. In case of optional parameters it can contain the predefined defaults. The details

service includes pagination offsets, page and result sizes in the meta info object.

Listing 4 shows an exemplary response by the endpoint used for searches in the user database. This endpoint is

used, for example, to find new contacts for an XMPP chat.

 Page 30 of 98

AAL-2012-5-200 D3.1

GET: users/search?q=bob&offset=0&limit=10&sort=birthDate

{

 "result": [

 {

 "id": 6,

 "username": "bob",

 "firstName": "Bob",

 "lastName": "GeTVivid",

 "birthDate": "null"

 }

],

 "meta": {

 "limit": 10,

 "offset": 0,

 "totalResults": 1,

 "query": "bob",

 "searchTime": 0.01018286

 }

}

Listing 4: Example response of user search REST endpoint.

3.3.2.2 Profiler client endpoint

Figure 15: Architecture of profiler client endpoint.

Listings 5 to 7 show the interfaces used for the integration of the profiling component. These endpoints are

used for the new offer wizard. Again, the SecurityContext is automatically injected and contains the current

user's ID.

The business logic behind the profiler endpoints is pretty straight forward. A request to the profiler-server

component is built with the profiler-client. Some predefined values are passed on as well as the given HTTP

parameters. The response returned by the profiler-client is then converted to a POJO and returned as JSON

string via the REST API. See Figure 15 for the schema of a call to the profiler.

 Page 31 of 98

AAL-2012-5-200 D3.1

public interface ISuggestCategory {

 /**

 * Sends a suggestion request to the profiling API.

 * @param title

 * @param language

 * @param securityContext

 * @return a category id with MetaInfo

 * @throws ProfilerException

 */

 @Path("suggestCategory")

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Authenticated

 public String suggestCategory(@QueryParam("title") String title,

 @QueryParam("language") String language,

 @Context SecurityContext securityContext) throws ProfilerException;

}

Listing 5: Interface for the suggestion of a category based on user, language and title.

public interface ISuggestLocation {

 /**

 * Sends a suggestion request to the profiling API.

 * @param categoryId

 * @param language

 * @param securityContext

 * @return a location with MetaInfo

 * @throws ProfilerException

 */

 Page 32 of 98

AAL-2012-5-200 D3.1

 @Path("suggestLocation")

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Authenticated

 public String suggestLocation(@QueryParam("categoryId") int categoryId,

 @QueryParam("language") String language,

 @Context SecurityContext securityContext) throws ProfilerException;

}

Listing 6: Interface for the suggestion of a location based on user, language and category identifier.

public interface ISuggestTime {

 /**

 * Sends a suggestion request to the profiling API.

 * @param categoryId

 * @param language

 * @param securityContext

 * @return a date/time with MetaInfo

 * @throws ProfilerException

 */

 @Path("suggestTime")

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Authenticated

 public String suggestTime(@QueryParam("categoryId") int categoryId,

 @QueryParam("language") String language,

 @Context SecurityContext securityContext) throws ProfilerException;

}

Listing 7: Interface for the suggestion of a date and time based on category identifier, user and language.

 Page 33 of 98

AAL-2012-5-200 D3.1

3.3.3 Message service

Figure 16 shows how the XMPP server (Prosody) is integrated with the rest of the system. On the one hand this

illustrates how all parts of the architecture work together. On the other hand it should be visible, that the

usage of open standards, such as OAuth 2.0 or XMPP, allows integrating and replacing open source software

with minimal effort. This allows fast development of new features and enables the developer to change

existing features by replacing a sub component or installing resp. create a plug-in to extend the functionality of

open source software.

For a detailed description of the interface between the XMPP server and the endpoints used for user probing

and authentication see Listing 8. Again, both endpoints are implemented with the RESTful framework Jersey,

but they do not strictly follow the usual REST conventions. For example, the response does not contain a

structured object (e.g., XML or JSON).

A Prosody authentication plug-in was developed to access the defined HTTP interface. It basically only takes the

user credentials or even only the user name and performs an HTTP call to the local HTTP API offered by the

Tomcat7 servlet. Prosody stores user (contact list) related information in the local MySQL database, which can

easily be accessed or modified by the web services running on the same machine. For example, it can be

necessary to limit access to certain information to members of the user's contact list or to a certain group. Both

can be accomplished by simply querying the database.

Figure 16: Integration of Prosody XMPP server

 Page 34 of 98

AAL-2012-5-200 D3.1

@Path("auth")

public interface IAuth {

 /**

 * Check credentials

 * @param username

 * @param password

 * @param realm

 * @return "true" or "false"

 */

 @POST

 @Consumes(MediaType.APPLICATION_FORM_URLENCODED)

 @Produces("text/plain")

 public String authenticate(@FormParam("username") String username,

 @FormParam("password") String password,

 @FormParam("realm") String realm);

 /**

 * Check if a user exists for a given username

 * @param username

 * @return "true"

 * @throws NotFoundException

 */

 @HEAD

 @Produces("text/plain")

 @Path("users/{username}")

 public String exists(@PathParam("username") String username)

 throws NotFoundException;

}

Listing 8: Interface for authentication services used by Prosody.

 Page 35 of 98

AAL-2012-5-200 D3.1

3.4 HbbTV client (IRT)

The following chapter shall give an overview about the architectural aspects of the TV client in the GeTVivid

platform. The HbbTV specification, which defines a set of standards, adopted from the broadcast and internet

world enabling interactive television, was used as a basis for the development. Also the Second-Screen-

Framework, which is an extension to HbbTV applications offering intuitive user input via a mobile device, will

be described.

3.4.1 Platform high level architecture

The hybrid broadcast broadband TV (HbbTV) iTV system was originally developed for the use in the DVB

broadcasting system and is based on widely used web technologies. It utilises the functionality provided in

existing web standards by defining sub-sets of these standards, also called profiles. Standards profiled in HbbTV

include, specifications from the Open IPTV Forum (OIPF), CEA, DVB and W3C, in particular CE-HTML and Java-

Script. The HbbTV specification encompasses the necessary broadcasting signal and specifies the requirement

on the browser integrated in the smart TV sets. HbbTV combines data and applications received via the

broadcast signal, with services, applications and content provided via the internet. Currently the next release of

HbbTV, commonly referred to as HbbTV 2.0, is being specified by the HbbTV Association. It will further align

HbbTV with HTML5, CSS3 and current DOM specifications, providing for an even tighter interoperability

between traditional internet applications and iTV.

3.4.2 Technical aspects

HbbTV covers more than only the functionality of a browser running on a TV. The HTML pages represent the

applications and have to be signalled to the terminal via the broadcast transport stream. Because some apps

are bound to the linear program service, the Application Lifecycle has to be taken care of, as well as some other

TV-specific issues, which were integrated in the specification (e.g., DRM, CI+ and subtitles). There’s also a

possibility to synchronise application events with the broadcast program (stream events).

3.4.2.1 Application signalling and receiving process

The information for managing the application is received by a hybrid broadcast broadband scheme. The

broadcast interface consists of a stack of modules that demultiplex MPEG2-transportstream packages and

parse the service information tables, looking for an Application Information Table (AIT). The AIT provides the

information needed for application signalling and application reception either via broadband using Internet

protocols or via the broadcast signal using a DSM-CC carousel (see Figure 17).

 Page 36 of 98

AAL-2012-5-200 D3.1

Figure 17: HbbTV architecture

Digital storage media command and control (DSM-CC) is a toolkit for developing control channels associated

with MPEG-1 and MPEG-2 streams. In this context, it is used to deliver internet data via the broadcast channel.

The DSM-CC allows to transmit small applications (like teletext replacement) to viewers who do not connect

their devices to the internet, by minimizing web server load by transmitting a small autostart launcher

application and link to web resources in a second usage step. However the conventional way of accessing

HbbTV applications is by a HTTP request from a broadband-connected service. Data from both delivery

channels can be processed seamlessly in one application.

3.4.2.2 Application types

Generally there are two types of applications when referring to HbbTV (also see Figure 18):

• Bound application (broadcast-related)
o bound to the TV service and is started when the service is tuned
o autostart application running as an overlay to the currently running broadcast service
o usually activated in full screen mode by the red button on the remote control
o is killed when another broadcast-service is tuned

• Unbound application (broadcast–independent)
o accessible through a portal delivered by TV manufacturers (similar concept like app stores)
o can be activated by other applications

 Page 37 of 98

AAL-2012-5-200 D3.1

Figure 18: HbbTV architecture - application types

3.4.3 Second Screen Framework

The Second Screen Framework is tailored for HbbTV applications and allows them to be expanded, providing a

bidirectional communication path with a browser based application on the second device. This allows HbbTV

applications to be controlled from a second screen, or specific information to be “pushed” from the TV set on

to the second screen. To create a connection between two devices, the user has to scan a QR code for a

specific application into the second screen device from the TV screen. When the connection is made, the

Second Screen application will start up automatically on the second device.

Since the solution is fully compliant with the HbbTV standard, it enables content providers to create fully

interactive applications with direct program relation potentially targeting millions of already deployed devices

on the market. Thus, the concept can be implemented without modifications to hardware and only minimal

extensions to existing applications.

The Second Screen Framework provides the following features to applications:

• Discovery of devices
• Connection
• App-to-app communication
• App launch

Communication between a TV application and its companion application on the second screen is handled by a

web server. Discovery between the devices is accomplished by means of a QR code. Both devices get a unique

identifier from the framework server (see Figure 19). The IDs are stored in cookies in the devices’ browsers. The

ID pairs are stored in a database on the framework server. Thus the connection between the devices is

persistent. Users need to execute the discovery process only once. The framework is hosted as a service that is

independent from the application that is making use of it.

 Page 38 of 98

AAL-2012-5-200 D3.1

End users can benefit from their device connections in every service that supports the framework, without

having to manage application-specific connection settings. Since the app-to-app communication is done over

the open Internet, there are no specific requirements regarding the network configuration to be implemented

by the end-user (e.g., the devices do not need to be in the same local network). The only requirements

regarding the technical set-up of the end-users devices are that both devices need an Internet connection and

that they have a JavaScript-enabled web browser installed. Although the current implementation uses a

centralized server, the 2.0 version of HbbTV shifts the logic of coupling and communication to the end-devices,

making an intermediate server redundant in the future.

Figure 19: Second Screen Framework

3.5 Mobile client (EVISION)

In accordance to the project proposal, the Mobile-Client is meant to be a “Second-Screen-Device” for the

GeTVivid platform running on a HbbTV set-top box at the home of older adults. In this role it will not only be a

display screen, but more the main input and controlling device for the whole system.

Due to their sophisticated hardware specifications, modern mobile devices like Smartphones and Tablets

provide the most convenient way of system interaction for the user. Especially, the intuitive and reliable touch

interaction promotes a maximum level of usability even for more complex controlling tasks, for younger people

as well as for older adults with mild impairs.

The first round of end user evaluations has shown that tablet devices with a display size of about 10 inch suites

best for the tasks of GeTVivid. The devices are not too big and not too heavy, so the end user can handle them

well. And the big size display together with a higher resolution provides more space for bigger icons and font-

sizes, so all the functions and symbols can be recognized more easily.

For the purposes of the development and evaluation process during the project time, the client is being

optimized for devices with Android operating system (V4.4.x “KitKat” or higher), because it is the most

common “open” standard in mobile operating systems. But due to the “thin-client” architecture, as described

 Page 39 of 98

AAL-2012-5-200 D3.1

in the following section of this document, it will be compatible with other versions of the operating system.

There will be also no further hardware requirements, except of a running WiFi connection. This is anyway a

mandatory hardware feature for all available mobile devices on the market. Nevertheless a display size of

about 10 inch is highly recommended.

3.5.1 Client conception

The Mobile-Client Application is developed as a “hybrid” application. Hybrid means that the core part of the

application is basically a web-client connecting to the web-application hosted on the “static content server”

(demo.getvivid.eu - see section 2.5.1), via a WiFi Internet connection. This core part is embedded in a native

application, developed for a specific target platform, like mobile devices with Android operating system. While

the web-application provides all functions and content for the web-client, the surrounding native app is just

dealing with hardware specific functions, like input listeners and sensors, in case they are needed. This way the

Mobile-Client appears - despite of its web-application core - as a “normal” App, providing the common “app-

like” user experience.

Basically the Mobile-Client is free of the strict limitations of the TV Client, as they are specified in the current

HbbTV V1.1 standard. Nevertheless, it sticks to some of this limitation, for example no usage of HTML5 and no

other script languages rather than JavaScript. The reason for this decision is that the Mobile-Client, as a

Second-Screen-Device for the TV, should have an equal appearance to the user. Furthermore, both clients need

to provide a synchronized interaction. To meet this requirement it is useful to keep the conception and

architecture as well as the used technologies on both clients similar. The web-application for the Mobile-Client

is built with standard web-development techniques like HTML (V4.01) and CSS. Additional functions are

realized in JavaScript.

This architecture concept promotes also the possibility to use the Mobile-Client as a full stand-alone-device to

interact with the GeTVivid platform, in case no suitable TV is available. For a more detailed description of this

conception, please refer to D4.1 (Documentation of the Mobile-Client).

3.5.2 Architecture overview of the mobile client

The high-level architecture of the Mobile-Client and its most important components are shown in the following

layer diagram (Figure 20).

 Page 40 of 98

AAL-2012-5-200 D3.1

Figure 20: Layer diagram of the mobile client

The Input Listeners are hardware connected components responsible for catching all input activities on the

device. Physical input activities of the user are “translated” by the operating system into so called “Events”. The

corresponding Input Listener of the App is listening to this input “Events”, like for example onTouch() or

onClick()and processes them according to the application logic.

The Content Processor is a browser-like component dealing with the web-content, in terms of viewing, caching

and editing. It represents the “web-application core” as it is mentioned in section 3.5.1. In Android this

standard component is called “android.webkit”.

The SSF Mapper is part of the synchronization process. It generates/processes synchronization messages send

via the SSF to/from the TV-Client. The principal function of this component and the synchronization process is

explained in section 3.4.3 as well as in section 3.5.4 and D4.1. The SSF Library provides the API necessary for

the coupling and the message exchange between the clients. (see also section 3.4.3 and 3.5.4)

JavaScript libraries are used for the implementation of all advanced functions of the web-application. The

“client library” developed by PLUS provides the API for the communication with the GeTVivid backend, like

requesting and storing user data. But JavaScipts are also used, to create functions inside the Mobile-App itself,

for example the validation of user input data (check of mandatory fields) is implemented in JavaScript.

3.5.3 System overview without synchronization

Figure 21 shows the basic system architecture first without the usage of the Second-Screen-Framework.

 Page 41 of 98

AAL-2012-5-200 D3.1

Figure 21: Basic architecture without SSF

The “GeTVivid Broadcast Service” delivers in the TV stream an embedded URL as starting point of the HbbTV-

Client Application. Once the application is started in full screen mode, it requests the necessary content from

the “GeTVivid-Application Server”. (For a detailed description, please refer to section 3.4).

The Mobile-Client is able to request the web-application content directly once the GeTVivid App is started on

the device. Mainly the content can be specified as:

• "Common-Static-Content" like the graphic components of the user interface, common "CSS Style
Sheets" and the common "Java Script Libraries".

• In addition to this common content, used by both clients, each client has some specific content, like
special style sheets and JavaScripts, dealing for example with the different ways of input and control
on both devices, classic remote control versus touch interface.

• And the application data itself, like for example user input data or a catalogue of the open offers and
demands posted by users.

This way, both client applications have full access to the system, but both are working “independently” from

each other. It is possible to work with the system on both devices at the same time but since they are not

coupled via the Second-Screen-Framework there is no synchronization between the applications.

3.5.4 System overview with synchronization

In order to establish the Mobile-Client as a real second screen remote control of the system some kind of

synchronization process is necessary. Figure 22 shows the system with the implementation of the SSF as

synchronization instance. The main working principal is still the same, but additionally both clients exchange

messages about the status of the current application via the SSF Server.

For example: Pushing the GeTVivid logo (“Home-Button”) on the mobile device navigates from any point of the

application back to the starting page “index.html”. Beside this standard action, a status message like “GoTo:

 Page 42 of 98

AAL-2012-5-200 D3.1

index” will be generated by the SSF Mapper and send to the TV Client using the SSF Library (see section 3.5.2).

After processing the message, the TV client is able to navigate to the corresponding page on the television.

This way the applications on both devices are always at the same status, displaying exactly the same user

interface on their screens. The exchange and synchronization process is explained in more detail in section

3.4.3, as well as in D4.1.

Figure 22: Architecture with SSF

 Page 43 of 98

AAL-2012-5-200 D3.1

4. OVERALL CONCLUSION

All details described above by the technical consortium members of the GeTVivid Project must be seen as the

basis for future work and development. It must be clear that the basis for the overall system is stipulated by all

members. However, if alterations and modifications are necessary, the status quo can be overridden.

What is still under evaluation / in the development phase are the things beyond the pure functionality: For

example, games for the older adults (including a possible aid against upcoming dementia), special features like

titles and achievements as a motivation for more and efficient use of the GeTVivid platform, the possibility to

rate a service / a person that gives a service, etc.

All this will of course precipitate itself in alterations of the status quo system architecture and design.

 Page 44 of 98

AAL-2012-5-200 D3.1

REFERENCES

A Tutorial on Clustering Algorithms. Retrieved December 5, 2014 from

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/.

Alexander, D. 2006. Data Mining. (March 2014). Retrieved December 5, 2014 from

http://www.eco.utexas.edu/~norman/BUS.FOR/course.mat/Alex/.

Arnold, S.E. 2001. Internet users at risk: the identity/privacy target zone. Searcher. 9(1), 24-39.

Association Rule Learning. (November 2014). Retrieved December 5, 2014 from

http://en.wikipedia.org/wiki/Association_rule_learning.

Birrer, F. A. J. 2005. Data mining to combat terrorism and the roots of privacy concerns. Ethics and Information

Technology, 7(4), 211-220.

Cluster Analysis. (November 2014). Retrieved December 5, 2014 from

http://en.wikipedia.org/wiki/Cluster_analysis.

Cummins, C. 2006. Below the Surface. Library Journal, Winter 2006, 12-14.

Data Mining Algorithms. (April 2014). Retrieved December 5, 2014 from http://msdn.microsoft.com/en-

us/library/ms175595.aspx.

K-nearest neighbors. (November 2014). Retrieved December 5, 2014 from http://en.wikipedia.org/wiki/K-

nearest_neighbors_algorithm.

Lipowicz, A. 2006. Washington Technology; Data Mining Gets a Makeover: Call it Fusion as New Tools Expand

Hunt for Terrorists. (FEDERAL) Washingtonpost Newsweek Interactive.

Saed, S. 2014. An Introduction to Data Mining. (November 2014). Retrieved December 5, 2014 from

http://www.saedsayad.com/k_nearest_neighbors.htm.

Schiaffino, S. and Amandi A. 2009. Intelligent User Profiling. Springer, Berlin, Germany.

Solove, D. 2004. The digital person: technology and privacy in the information age. NYU Press.

Tan, P.N. and Steinbach, M. and Kumar, Vipin 2006. Introduction to Data Mining. Addison-Wesley, Boston, MA.

 Page 45 of 98

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
http://www.eco.utexas.edu/%7Enorman/BUS.FOR/course.mat/Alex/
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Cluster_analysis
http://msdn.microsoft.com/en-us/library/ms175595.aspx
http://msdn.microsoft.com/en-us/library/ms175595.aspx
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.saedsayad.com/k_nearest_neighbors.htm

AAL-2012-5-200 D3.1

ANNEX A

This Annex was created to explain the classification methods mentioned in section 3.2.3 to facilitate the

reading of the general platform technical overview.

Classification methods

First version is focused on the J48 tree decision algorithm which is an implementation of the C4.5, used to

classify a data model or a single instance, based on a previous trained model.

C4.5 builds decision trees from a set of training data in the same way as ID3, using the concept of information

entropy. The training data is a set S = {s_1, s_2, ...} of already classified samples. Each sample s_i consists of a

p-dimensional vector (x_{1,i}, x_{2,i}, ...,x_{p,i}) , where the x_j represent attributes or features of the sample,

as well as the class in which s_i falls.

At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples

into subsets enriched in one class or the other. The splitting criterion is the normalized information gain

(difference in entropy). The attribute with the highest normalized information gain is chosen to make the

decision. The C4.5 algorithm then recurs on the smaller sublists.

This algorithm has a few base cases. All the samples in the list belong to the same class. When this happens, it

simply creates a leaf node for the decision tree saying to choose that class:

• None of the features provide any information gain. In this case, C4.5 creates a decision node higher up

the tree using the expected value of the class.

• Instance of previously-unseen class encountered. Again, C4.5 creates a decision node higher up the

tree using the expected value.

• Imagine that you have a dataset with a list of predictors or independent variables and a list of targets

or dependent variables. Then, by applying a decision tree like J48 on that dataset would allow you to

predict the target variable of a new dataset record.

Clustering

Clustering can be considered the most important unsupervised learning problem; so, as every other problem of

this kind, it deals with finding a structure in a collection of unlabeled data.

A loose definition of clustering could be “the process of organizing objects into groups whose members are

similar in some way”. A cluster is therefore a collection of objects which are “similar” between them and are

“dissimilar” to the objects belonging to other clusters. We can show this with a simple graphical example (see

Figure 14).

 Page 46 of 98

AAL-2012-5-200 D3.1

Figure 23: Clustering

In this case the 4 clusters into which the data can be divided are easily identified; the similarity criterion is

distance: two or more objects belong to the same cluster if they are “close” according to a given distance (in

this case geometrical distance). This is called distance-based clustering.

Another kind of clustering is conceptual clustering: two or more objects belong to the same cluster if this one

defines a concept common to all that objects. In other words, objects are grouped according to their fit to

descriptive concepts, not according to simple similarity measures.

Other utilities: how many clusters, instances of the clusters,…

K-means

First version of the clustering algorithms is focused on the K-means, this algorithm is one of the simplest

unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple

and easy way to classify a given data set through a certain number of clusters (assume k clusters) fixed a priori.

The main idea is to define k centroids, one for each cluster. These centroids shoud be placed in a cunning way

because of different location causes different result. So, the better choice is to place them as much as possible

far away from each other. The next step is to take each point belonging to a given data set and associate it to

the nearest centroid. When no point is pending, the first step is completed and an early groupage is done. At

this point it is necessary to re-calculate k new centroids as barycenters of the clusters resulting from the

previous step. After these k new centroids are calculated, a new binding has to be done between the same

data set points and the nearest new centroid. A loop has been generated. As a result of this loop one may

notice that the k centroids change their location step by step until no more changes are done. In other words

centroids do not move any more.

Finally, this algorithm aims at minimizing an objective function, in this case a squared error function. The

objective function

Where is a chosen distance measure between a data point and the cluster centre , is an indicator

of the distance of the n data points from their respective cluster centres.

 Page 47 of 98

AAL-2012-5-200 D3.1

The algorithm is composed of the following steps:

1. Place K points into the space represented by the objects that are being clustered. These points
represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the objects
into groups from which the metric to be minimized can be calculated.

Association methods consist on giving of transactions and finding rules that will predict the occurrence of an

item based on the occurrences of other items in the transaction. Association is useful for discovering

interesting relationships hidden in large data set, the uncovered relationships can be represented in the form

of association rules or sets of frequent items, as can be seen in the example (see Listing 2).

Market-Basket transactions

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} → {Beer},

{Milk, Bread} → {Eggs,Coke},

{Beer, Bread} → {Milk},

Implication means co-occurrence,

not causality!

Listing 9: Association rules

K-nearest neighbourhood

K nearest neighbourhood is a simple algorithm that stores all available cases and classifies new cases based on

a similarity measure (e.g., distance functions). KNN has been used in statistical estimation and pattern

recognition since the beginning of 1970’s as a non-parametric technique.

A case is classified by a majority vote of its neighbours, with the case being assigned to the class most common

amongst its K nearest neighbours measured by a distance function (see Figure 16). If K = 1, then the case is

simply assigned to the class of its nearest neighbour.

 Page 48 of 98

AAL-2012-5-200 D3.1

Figure 24: Distance functions

It should also be noted that all three distance measures are only valid for continuous variables. In the instance

of categorical variables the Hamming distance must be used. It also brings up the issue of standardization of

the numerical variables between 0 and 1 when there is a mixture of numerical and categorical variables in the

dataset.

Choosing the optimal value for K is best done by first inspecting the data. In general, a large K value is more

precise as it reduces the overall noise but there is no guarantee. Cross-validation is another way to

retrospectively determine a good K value by using an independent dataset to validate the K value. Historically,

the optimal K for most datasets has been between 3-10. That produces much better results than 1NN.

Example:

Consider the following data concerning credit default. Age and Loan are two numerical variables (predictors)

and Default is the target (see Figure 16).

Figure 25: Example concerning credits

 Page 49 of 98

AAL-2012-5-200 D3.1

We can now use the training set to classify an unknown case (Age=48 and Loan=$142,000) using Euclidean

distance. If K=1 then the nearest neighbor is the last case in the training set with Default=Y.

D = Sqrt[(48-33)^2 + (142000-150000)^2] = 8000.01 >> Default=Y

With K=3, there are two Default=Y and one Default=N out of three closest neighbors. The prediction for the

unknown case is again Default=Y.

Profiling applying data mining is an increasingly common technique that gives added value to applications.

Allowing applications to give personalized services in very different scenarios or scopes, is used by

governments and corporations to predict and establish trends with specific purposes in mind [Birrer, 2005;

Alexander, 2006]. For example, The TIA and ADVISE use data mining is used as an anti-terrorist measure by

looking for specific data to identify the terrorists before a terrorist attack [Solove, 2004; Birrer, 2005, Lipowicz,

2006] or Amazon.com uses it to promote its sales by pre-selecting items (Arnold, 2001) while Libraries use data

mining to become more efficient in developing their collections and management of staff [Cummins, 2006].

 Page 50 of 98

AAL-2012-5-200 D3.1

ANNEX B - USER STORIES

Wikipedia defines user stories as follows: In software development and product management, a user story is

one or more sentences in the everyday or business language of the end user or user of a system that captures

what a user does or needs to do as part of his or her job function. User stories are used with agile software

development methodologies as the basis for defining the functions a business system must provide, and to

facilitate requirements management. It captures the 'who', 'what' and 'why' of a requirement in a simple,

concise way, often limited in detail by what can be hand-written on a small paper notecard.

User stories are written by or for business users or customers as a primary way to influence the functionality of

the system being developed. User stories may also be written by developers to express non-functional

requirements (security, performance, quality, etc.), though primarily it is the task of a product manager to

ensure user stories are captured.

When the time comes for creating user stories, one of the developers gets together with the product owner (in

Scrum), which has the responsibility for formulating the user stories. The developer may use a series of

questions to get the customer representative going, such as asking about the desirability of some particular

functionality, but must take care not to dominate the idea-creation process.

As the customer representative conceives a user story, it is written down on a note card (here a confluence

(sub-) page was created) with a name and a brief description. Commonly, user stories are not to be definite

once they have been written down, since requirements tend to change throughout the development lifecycle,

which agile processes handles by not carving them in stone upfront.

(Source: http://en.wikipedia.org/wiki/User_story)

ID Item
Platform Monitoring and Controlling

01.01

Registration Approval
As a user [administrator] of the GeTVivid system
I want the registration to be conducted
So that a registration process can be completed automatically

01.02

New Professional Offer Approval
As a user [administrator] of the GeTVivid system
I want to approve the first professional offer of each user [provider]
So that I can sort out abusive services.

01.03

Offer or Demand Rejection
As a user [administrator] of the GeTVivid system
I want to reject n offer or demand of a user [provider, consumer]
So that I can remove abusive services.

01.04

User Behavior Management
As a user [administrator] of the GeTVivid system
I want to ban an abusive user
So that his or her account is deactivated until the matter is solved

01.05 Report a User

 Page 51 of 98

http://en.wikipedia.org/wiki/User_story
https://confluence.icts.sbg.ac.at/display/GeTVivid/03+-+Offer+or+Demand+Rejection

AAL-2012-5-200 D3.1

As a user [consumer, provider] of the GeTVivid system
I want be able to report another user [consumer, provider] (e.g. abusive usage of the GeTVivid system).
So that the misbehavior can reviewed and verified and the necessary actions (warning, sanctions,
deletion, possible other actions?) be executed.

01.06 Automatic Fraud Prevention
Profiling, Anomalies

Registration Process

02.01

User Driven Registration
As a user [prospective consumer, prospective provider] of the GeTVivid system
I want to create an user account for myself
So that I can use the full range of functions

02.02

Administrator driven registration
As a user [platform administrator] of the GeTVivid system
I want to create a user account for another user [prospective consumer, prospective provider]
So that the user [prospective consumer, prospective provider] is able to use the full range of functions

02.03

Consumer driven activation
As a user [consumer] with an account that has just been registered
I want to receive an eMail containing an activation link
So that I can activate my account by clicking on the link
or by copy/paste the link into an online form

02.04

Administrator driven activation
As a user [platform administrator]
I want to browse a list of accounts, that have not been activated yet
So that I can activate his / her account by clicking on an activation button next to the user
name/identification.

Login and Logout

03.01

Login
As a user [consumer] of the GeTVivid system
I want to log into the system
So that I am recognized by the system, connected to the system and have a permanent connection with
the system

03.02

Logout
As a user [consumer] of the GeTVivid system with an active log in
I want to log off the system
So that I am no longer recognized by the system and I can log on again with the same or a different
account.

Device Coupling and Decoupling

04.01

Coupling TV and Tablet
As a user [consumer] with an activated GeTVivid account
I want to couple a HbbTV device with a tablet computer by photographing a QR-code from the TV or by
typing in a displayed TAN
So that I can use the tablet as a second screen device for displaying information and navigation

04.02

Decoupling TV and Tablet
As a user [consumer] with two coupled devices
I want to decouple my devices
So that I can couple them with other devices.

 Page 52 of 98

AAL-2012-5-200 D3.1

Offer-driven approach

05.01

Posting a General Offer - Professional
As a user [provider] with an activated account to which I am currently logged-in to
I want to offer my services to other users [consumer] by adding them to the catalog via the web-
interface
So that other users [consumer] can request them in an easy way at anytime

05.02

Responding to a General Offer – Professional
As an user [consumer] with an activated account to which I am currently logged-in to
I want to respond to a general offer
So that I get a professional service

05.03

Posting a General Offer – Informal
As a user [consumer] with an activated account to which I am currently logged-in to
I want to offer my (informal) help to other users [consumer] by adding an element to the catalogue
So that other users [consumer] can request them in an easy way at anytime

05.04

Responding to a General Offer – Informal
As an user [consumer] with an activated account to which I am currently logged-in to
I want to respond to a general offer (Informal)
So that I can obtain the offer

05.05

Posting a Short-Term Offer
As a user [consumer] with an activated account to which I am currently logged-in to
I want to offer short-dated services and information to a defined or undefined group of other users
[consumer] by sending a message to the platform
So that the other users [consumer] can be notified on condition that they are available to the system
during the period of my message-availability

05.06

Responding to a Short-Term Offer
As an user [consumer] with an activated account to which I am currently logged-in to
I want to respond to a short-term offer (Informal)
So that I can obtain the offer

05.07

Posting a Joint Activity Offer
As a user [provider, consumer] with an activated account to which I am currently logged-in to
I want to offer joint activities in terms of multi-consumer and / or multi-variant appointments
So that other users [consumer] can vote / subscribe for 0..n suggested appointments

05.08

Responding to a Joint Activity Offer
As a user [consumer] with an activated account to which I am currently logged-in to
I want to respond to a Joint Activity Offer
So that I can obtain the offer

05.09

Modification of Offers
As a user [consumer] with an activated account to which I am currently logged-in to
I want to update or delete my offer
So that it meets the actual necessities

05.10

System Generated (Joint) Activity Offers
As a user [administrator]
I want to generate Joint Activity Offers in regions with low or no activity
So that the activity in the system is augmented.

05.11

Modification of an Agreement
As a user [consumer, provider] with an activated account to which I am currently logged-in to
I want to renegotiate an existing agreement
So that it meets the actual necessities.

 Page 53 of 98

AAL-2012-5-200 D3.1

Demand-driven approach

06.01

Posting a General Demand
As a user [consumer] with an existing account to which I am currently logged-in to
I want to post a certain demand in terms of a service that I am generally looking for
So that other users [consumer, provider] can respond to my request by offering their help

06.02 Responding to a General Demand
See 02 - Responding to a General Offer – Professional and 04 - Responding to a General Offer – Informal.

06.03

Posting a Short-Term Demand
As a user [consumer] with an existing account to which I am currently logged-in to
I want to post a certain demand in terms of a service that I am looking for
So that other users [consumer, provider] who have marked during the configuration
that they are generally willing to help in such cases are notified and can respond to my request by
offering their help

06.04 Responding to a Short-Term Demand
See 06 - Responding to a Short-Term Offer.

User Accounts

07.01

Account Status
As a user [consumer] with an existing account to which I am currently logged-in to
I want to set the status of my account inactive or active
So that I don't receive any more notifications (in order to avoid Logout/Login)

07.02

Configure Account for Demand Request Distribution
As a user [consumer] with an existing account to which I am currently logged-in to
I want to mark a selection of categories [provider] or a selection of category-user tuples [consumer]
So that demand driven requests can be forwarded to me or notifications can be displayed in my account

07.03 Role Achievements
Profiling, Gamification, User Roles (e.g. "the mechanic", "the transporter", ...)

Message Service

08.01

One-To-Many (Mailinglist)
As a user [consumer] with an existing account to which I am currently logged-in to
I want to send a message to a group of users [consumer]
So that those are informed

08.02

Automatic Notifications
As a user [consumer] with an existing account to which I am currently logged-in to
I want to receive automatic notifications
So that I am able to keep track of interesting topics, my medication, the weather etc.

08.03

New Offer / Demand Bubble
As a user [consumer] with an existing account to which I am currently logged-in to
I want to have an indicator on the start page
So that I am informed if there are any new demands or offers.

Calendar

09.01

Create a Calendar Entry
As a user [consumer] with an existing account to which I am currently logged-in to
I want to create a new appointment or to-do in my personal calendar
So that it helps me to organize my agenda.

09.02 Modify a Calendar Entry

 Page 54 of 98

AAL-2012-5-200 D3.1

As a user [consumer] with an existing account to which I am currently logged-in to
I want to modify or delete an existing appointment or to-do in my personal calendar
So that it meets the actual necessities.

09.03

Confirm a Reminder
As a user [consumer] with an existing account to which I am currently logged-in to
I want to be reminded at the specified time
So that I don't forget an appointment or to-do.

Interaction Modalities

10.00 Interaction between/on mobile client and HbbTV Client

User Pofiling

11.01

Suggested services based on the navigation history
As a user [consumer] of the GeTVivid system
I want to see suggestions based on my navigation history
So that I can select different services quickly

11.02

Suggested services based on purchase history
As a user [consumer] of the GeTVivid system
I want to see suggestions based on my purchase history
So that I can select different services quickly

11.03

Suggested Services based on other users
As a user [consumer] of the GeTVivid system
I want to see suggestions based on the services which other users have been looking for
So that I can select different services quickly

11.04

Suggested Services based on other users purchases
As a user [consumer] of the GeTVivid system
I want tto see suggestions based on the services which other users have hired
So that I can select different services quickly

11.05

Suggest most purchased services
As a user [consumer] of the GeTVivid system
I want to see most purchased services suggestions
So that I can select different services quickly

11.06

Identity impersonation system
As a user [consumer] of the GeTVivid system
I want to know if someone is impersonating my account
So that I can take security measures

11.07

Terms abusive detector system
As a user [consumer] of the GeTVivid system
I want to notify when I see an abusive terms service
So that the system will notify the abusive terms service to the user [consumer] and to the administrator
of the platform

11.08

Suggest services most popular in the user´s[customer] area
As a user [consumer] of the GeTVivid system
I want to know most popular services in my area
So that I can select a service quickly

Status as of September 2014

 Page 55 of 98

AAL-2012-5-200 D3.1

01 Platform Monitoring and Control

 Page 56 of 98

AAL-2012-5-200 D3.1

 Page 57 of 98

AAL-2012-5-200 D3.1

 Page 58 of 98

AAL-2012-5-200 D3.1

 Page 59 of 98

AAL-2012-5-200 D3.1

 Page 60 of 98

AAL-2012-5-200 D3.1

 Page 61 of 98

AAL-2012-5-200 D3.1

02 Registration Process

 Page 62 of 98

AAL-2012-5-200 D3.1

 Page 63 of 98

AAL-2012-5-200 D3.1

 Page 64 of 98

AAL-2012-5-200 D3.1

 Page 65 of 98

AAL-2012-5-200 D3.1

03 Login and Logout

 Page 66 of 98

AAL-2012-5-200 D3.1

 Page 67 of 98

AAL-2012-5-200 D3.1

04 Device Coupling and Decoupling

 Page 68 of 98

AAL-2012-5-200 D3.1

 Page 69 of 98

AAL-2012-5-200 D3.1

05 Offer-driven approach

 Page 70 of 98

AAL-2012-5-200 D3.1

 Page 71 of 98

AAL-2012-5-200 D3.1

 Page 72 of 98

AAL-2012-5-200 D3.1

 Page 73 of 98

AAL-2012-5-200 D3.1

 Page 74 of 98

AAL-2012-5-200 D3.1

 Page 75 of 98

AAL-2012-5-200 D3.1

 Page 76 of 98

AAL-2012-5-200 D3.1

 Page 77 of 98

AAL-2012-5-200 D3.1

 Page 78 of 98

AAL-2012-5-200 D3.1

 Page 79 of 98

AAL-2012-5-200 D3.1

 Page 80 of 98

AAL-2012-5-200 D3.1

06 Demand-driven approach

 Page 81 of 98

AAL-2012-5-200 D3.1

 Page 82 of 98

AAL-2012-5-200 D3.1

 Page 83 of 98

AAL-2012-5-200 D3.1

07 User Accounts

 Page 84 of 98

AAL-2012-5-200 D3.1

 Page 85 of 98

AAL-2012-5-200 D3.1

08 Message Service

 Page 86 of 98

AAL-2012-5-200 D3.1

 Page 87 of 98

AAL-2012-5-200 D3.1

 Page 88 of 98

AAL-2012-5-200 D3.1

 Page 89 of 98

AAL-2012-5-200 D3.1

09 Calendar

 Page 90 of 98

AAL-2012-5-200 D3.1

 Page 91 of 98

AAL-2012-5-200 D3.1

 Page 92 of 98

AAL-2012-5-200 D3.1

10 Interaction Modalities

11 User Profiling

 Page 93 of 98

AAL-2012-5-200 D3.1

 Page 94 of 98

AAL-2012-5-200 D3.1

 Page 95 of 98

AAL-2012-5-200 D3.1

 Page 96 of 98

AAL-2012-5-200 D3.1

 Page 97 of 98

AAL-2012-5-200 D3.1

 Page 98 of 98

	1. EXECUTIVE SUMMARY
	1.1 Introduction and components overview
	1.2 Agile software development
	1.3 Link with the objectives of the project

	2. System Architecture
	2.1 Architecture development
	2.2 First draft
	2.2.1 Iteration of the initial architecture sketch
	2.2.2 System-wide authentication

	2.3 Second draft
	2.4 Third draft
	2.4.1 Client-server communication
	2.4.2 Authentication and authorization

	2.5 Elaboration and implementation of the third and final draft
	2.5.1 REST APIs
	2.5.2 Authentication and authorization
	2.5.3 Used software

	3. System components
	3.1 Appointment Coordination System (USG)
	3.1.1 System conception
	3.1.1.1 Basic architecture
	3.1.1.2 Backend
	3.1.1.3 Web-Frontend
	3.1.1.4 Client
	3.1.1.5 ACS OAuth REST interface

	3.2 Profiling system (ISOIN)
	3.2.1 Profiler system description and integration
	3.2.2 Profiling internal architecture
	3.2.3 Data mining algorithms

	3.3 Additional functionality (PLUS)
	3.3.1 Conception
	3.3.2 REST API
	3.3.2.1 Endpoints related to message service
	3.3.2.2 Profiler client endpoint

	3.3.3 Message service

	3.4 HbbTV client (IRT)
	3.4.1 Platform high level architecture
	3.4.2 Technical aspects
	3.4.2.1 Application signalling and receiving process
	3.4.2.2 Application types

	3.4.3 Second Screen Framework

	3.5 Mobile client (EVISION)
	3.5.1 Client conception
	3.5.2 Architecture overview of the mobile client
	3.5.3 System overview without synchronization
	3.5.4 System overview with synchronization

	4. OveralL conclusion
	REFERENCES
	Annex a
	Annex B - User Stories

