

Project ref no
AAL-2013-6-131

Project acronym Elders-Up!

Project full title

Adaptive system for enabling the elderly

collaborative knowledge transference to small

companies

Dissemination level Public

Date of delivery 12/2/2016

Deliverable name
DR2.7 First Functional Requirements and API

Specification for Services

Type Report (R)

Status Final

WP contributing to the deliverable WP 2

Main contributors ISOIN

Other contributors GEO, IDENER, TUC, CCare

Author(s) Juan Rodríguez

Keywords Functional requirements, use cases, API

Abstract (for dissemination)

The purpose of this dissemination level public

report is to specify the final functional

requirements for Elders-Up! project. The

system is comprised of various sub-systems

implemented by different partners, which has

been interconnected and work together.

Requirements are specified both with regards

to what functionality the system provides to

end users, and with regards to what interfaces

and functionality the various sub-systems

provide.

Elders-Up!: Adaptive system for enabling the elderly collaborative

knowledge transference to small companies

AAL-2013-6-131

Deliverable

D.2.7 Final Functional Requirements and API specification for

Elders-Up! Services

Public

© 2014-2017 Elders-Up! consortium

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Final

3

VERSION HISTORY

Version Edited by Date Description

0.1 Juan Rodríguez 15st September 2016 First version

0.2 Juan Rodriguez 25 September Second version

0.3 Juan Rodríguez 16 September 2016 Inclusion of input from D4.3, D3.4

and D3.8

0.4 Juan Rodríguez 21 September 2016 Final Draft

0.5 Ionut Anghel 28 September 2016 Review by TUC

0.6 Janna Alberts 1 December 2016 Review by CCare

0.7 Juan Rodríguez 7 December 2016 Final Version

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Final

4

Table of Contents

1 INTRODUCTION .. 6

1.1 GUIDE TO THIS DOCUMENT .. 7

2 SYSTEM OVERVIEW .. 9

2.1 USER ROLES ... 9

2.2 OVERALL ARCHITECTURE ... 10

3 ELDERS-UP! MODULES AND FUNCTIONAL REQUIREMENTS .. 11

3.1 INTERFACE SKILL SENIOR (ISS) ... 11

3.2 DASHBOARD ... 13

3.3 OPPORTUNITY SELECTION (SMS GUI) ... 14

3.4 INTERFACE SKILL END USER (ISEU) ... 15

3.5 ADAPTIVE GROUP SPACE (AGS) ... 18

3.6 SELF-REPORTING COLLECTION (SRC)... 20

3.7 SRC FORMS (SRC GUI) ... 21

3.8 SENSOR DATA COLLECTION (SDC) .. 22

3.9 DATA MANAGER (DM) .. 22

3.10 ADAPTATION DECISION MAKER (ADM) ... 23

3.11 SKILL MATCHING SERVICE (SMS) ... 24

3.12 SKILL RECOGNITION (SR) .. 25

3.13 KNOWLEDGE BASE (KB) .. 26

3.14 MAILING SYSTEM (MS) .. 27

3.15 TUTOR ... 28

3.16 MEDIFORM (FORM MANAGER) ... 30

4 SYSTEM INTEGRATION ... 32

4.1 SYSTEM ARCHITECTURE ... 32

4.2 APPLICATION STRUCTURE .. 34

4.3 INTERCONNECTION BETWEEN MODULES ... 34

5 FUNCTIONAL VIEW ... 35

5.1 FUNCTION SPECIFICATION ... 35

5.2 FUNCTIONALITY PRIORITY .. 41

6 USE CASES .. 44

6.1 USE CASE: CREATE AND CONFIGURE AN ACCOUNT .. 45

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Final

5

6.2 USE CASE: SIGN IN ... 45

6.3 USE CASE: SIGN OUT .. 46

6.4 USE CASE: UPDATE YOUR PROFILE... 46

6.5 USE CASE: ACCEPT THE JOB OPPORTUNITY .. 47

6.6 USE CASE: ENTER IN A GROUPSPACE ... 47

6.7 USE CASE: SEARCH FOR A MATCH ... 48

6.8 USE CASE: USE TUTOR ... 48

6.9 USE CASE: CREATE JOB OPPORTUNITY ... 49

6.10 USE CASE: RESPONSE TO A TASK REQUEST .. 49

6.11 USE CASE: SEE SUCCESS CASES ... 50

6.12 USE CASE: CREATE GROUPSPACE ... 50

6.13 USE CASE: SEND MESSAGES OR IMAGES ... 51

6.14 USE CASE: SEND EMAILS ... 51

6.15 USE CASE: MAKE APPOINTMENTS & TRACK APPOINTMENTS ... 52

6.16 USE CASE: ACCEPT/REJECT INVITATIONS .. 52

6.17 USE CASE: CHECK SHARED CALENDAR .. 53

6.18 USE CASE: ADD OR REMOVE FILES ... 53

6.19 USE CASE: EDIT SHARED FILES .. 54

6.20 USE CASE: INVITE NEW MEMBERS ... 54

6.21 USE CASE: ADAPT THE USER INTERFACE MANUALLY .. 55

6.22 USE CASE: ADAPT THE USER INTERFACE AUTOMATICALLY ... 55

7 API SPECIFICATION ... 57

8 LIST OF FIGURES ... 58

9 LIST OF TABLES ... 60

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Final

6

 M15

 M11 M16 M21 M24 M27 M30

1 Introduction

The Elders-Up! project follows a user-centric system design methodology, in which

participatory design techniques are used throughout the project. This deliverable builds

upon the foundation of DR2.7 First Functional Requirements and API Specification for

Services in which the first functional requirement and system specification was obtained.

Following the user driven methodologies that this project embrace, several phases of user

evaluation and validation were performed to guarantee an iterative compliance between

user needs and the system developed. In particular, the consortium has gone through 2

validations with users before obtaining a final prototype 2.0.

In order to have a clearer view of the milestones (marked in red) and the

deliverables associated with WP4 and WP2, we present a brief timeline that comprises the

roadmap summarizing the milestones. It should be highlighted that P1.5 (M24) was not

included in the initial DoW, however the consortium decided that there were quite a few

changes after First Prototype that needed to be shown and tested before the final

(second) prototype. As such, it was agreed to develop P1.5 that included all the necessary

changes that were taken from the users’ feedback of the First Prototype. Table 1 describes

milestones and deliverables driven by user feedback and piloting.

Month Description

M11 DR2.7 First Functional Requirements and API specification for services

M15 D4.2 First Elders-Up! Integrated Prototype

M15 First integrated prototype

M16 D4.5a First prototype evaluation plan

M21* D4.6b First prototype report (evaluation and recommendations)

M24
D4.5b Final prototype evaluation plan

P1.5 Prototype1.5

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Final

7

M27 Second integrated prototype

M27 D2.7 Final Functional Requirements and APIs specification for services

M27 D4.3 Final Elders-Up! Integrated Prototype

M30 Final integrated prototype

D4.7 Final prototype evaluation and users validation
Table 1. Deliverables and milestones from P1.0 to fina prototype

*Moved to M28 for the inclusion of P1.5

In Figure 1 we can see the evolution followed from DR2.7 to D2.7. Deliverable D4.2

describes the first version of the Elders-Up! Integrated prototype where user input and

needs have been incorporated through user analysis as described in DR2.7. D4.5b reports

on the user evaluation carried out in 3 different pilot sites after the completion of the first

integrated prototype. D4.6b presents the recommendation after a deep analysis and

understanding on the finding presented in D4.5b. Finally, D4.3 take all this input to deliver

a Final Elders-Up! Prototype that fulfils user needs and serve as input for D2.7.

Figure 1. The six stages towards final functional requirements in the Elders-Up user-centric system design
methodology

1.1 Guide to this document

This document is a result of the technical development, user specification, user findings and

system design work developed throughout the Elders-Up! project. The main goal is to specify

First Functional
Requirements And
APIs specification

(DR 2.7)

First Elders-Up!
Integrated Protoype

(D4.2)

Report on pilot
deployment

(D4.5b)

Final Prototype
evaluation and

recommendation
(D4.6b)

Final Elders-Up!
Integrated

Prototype (D4.3)

Functional
requirements

(D2.7)

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Final

8

the final requirements; with regards to what functionality the system will provide to end users

based on their demands that will be integrated in the final release.

In the following section a brief introduction of the system will be explained. In chapter 3 the

functionality of each module of the Elders-Up! system will be described as well as some

functional requirement requested by users during the evaluations. Once the functionality of

each module is described in chapter 4 the integration between the system modules will be

shown. Chapter 5 shows the set of functionalities of the whole Elders-Up! system. Chapter 5

shows an overview of all functionalities implemented with their priority. In order to complete

this section the uses cases will be explained in Chapter 6. It is worth mentioning that the API

specification that were to be included in chapter 7 has been moved to deliverable D4.3 “Final

Elders-Up! Integrated prototype”, for the sake of avoiding unnecessary repetition this

information does not appear in this document. Finally, in chapter 8 and chapter 9 the figure

list and tables will be shown.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

9

2 System overview

2.1 User Roles

The primary users of the system can be categorized in two groups:

1. Senior Experts (or Older adult User)

They provide experience and knowledge to start-up companies. The aim is to enable

this group to share their knowledge and skills, make new connections, meet

businesses and volunteer their time through the platform. Each user from this group

has some level of expertise in some specific area.

2. Companies (or Company User)

Companies may benefit from the experience and knowledge of the older adults. When

looking for a specific skill and knowledge, the company the company can make a new

offer in the platform and find the suitable person to be the part of the company’s

team.

In the user research carried out prior to the first prototype (Refer to DR2.7), an

optional third role was identified:

Moderators

The moderators facilitate the matchmaking process. They can for example support

companies and experts in creating their profiles, in finding matches, and in starting a

collaboration process.

 This role has been played out by the evaluators during the various pilots and validation

phases in order to ease the interaction of users and companies.

After the completion of Prototype P1.0 and based on the functional requirement explained

in the next section, the consortium opted for the development of an online virtual tutor

(For a detail description of this functionality refer to D3.4).

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

10

2.2 Overall Architecture

The Elders-Up! system is composed of several modules that can be seen in Figure 2.

This architecture has been improved through changes with respect to the architecture

presented in DR2.7. These are the inclusion of the MediForm Form manager and the

Tutor. User requirement leading to this change will be covered in chapter 3.

For a complete system description including all the modules refer to:

 D4.3 Final Elders-Up! Integrated prototype: Complete system architecture and

APIs.

 D3.8 Collaborative and adaptive workspace 2nd prototype: ICAW including

interfaces and final functionalities of the platform.

 D3.2 Skill Matching service 2nd Prototype.

 D3.4 Sensors and self-reporting data gathering 2nd Prototype

 D3.6 Adaptation Decision maker 2nd Prototype

 Figure 2: Elders-Up! application structure

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

11

3 ELDERS-UP! Modules and Functional Requirements

 In this chapter the functional requirements of the different modules will be

described. In addition, this section describes the features achieved by the final

prototype for each one of the modules located in the internal architecture shown in

the previous section.

3.1 Interface Skill Senior (ISS)

The Interface Skill Senior (ISS) is the GUI (Figure 3Error! Reference source not

found.Error! Reference source not found.Error! Reference source not found.) that

enables the senior to:

 Set up/amend profile

 Include availability options for collaborations

 Express motivation to collaborate

 View current opportunity matches

 Accept/reject opportunity matches

The ISS allow the senior to input all of their profile information. It stores all of the

relevant personal information, together with the users’ skills inputted either by the

skills taxonomy (Figure 4 and

Figure 5).

Users are able to amend

profile settings and skills.

Figure 3.Personal data

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

12

Figure 4. Senior user skills

Figure 5.Motivatoin and availability

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

13

The main findings found during user evaluations of this module are shown in

Table 2:

Register and profile completion

All registration fields shown were set as obligatory which was perceived as too much

information to fill in at once.

The language drop down menu was not ordered in an alphabetical order, making it confusing

for users to find the correct language.

If the user went back to the previous page, the information was not automatically saved

Users did not understand the aim of the profile page, and needed a short introduction.

The skills tree was perceived as complex and unclear.

Table 2. End user Requirements

These findings have been analyzed and addressed in the following way: (1)

Introducing the profile page during the first time visit using introduction modals, (2)

Languages are ordered alphabetically, (3) Information is automatically saved and (4)

improvements in the usability of the skills tree

3.2 Dashboard

The dashboard is the central menu page for the senior experts and the SME’s

(Figure 6). It is worth noting that the Dashboard shows a slight different functionality

whether the user is a senior or a company. The dashboard provides access to the

Adaptive Group Spaces, to the user profile, company profile, and to the search &

match functionality. Additionally, if the user is a company it will have the option to

create a GroupSpace for other seniors to join. Functional requirements can be

summarized in:

 Easy access to Elders-Up! core functionalities

The look and feel have been greatly improved based on user feedback. The

current system is focused on usability and understandability. A clean design and icons

representing the features underneath shows this approach.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

14

Figure 6. Dashboard senior expert

3.3 Opportunity Selection (SMS GUI)

The Opportunity Selection (SMS GUI) is the interface from where users select

matches that are provided by the skills matching service.

The SME matching selector provides a list of senior users matched to the job

opportunity input through the skill recognition (SR) module and is output via the SMS.

The matches are weighted according to the algorithms within the SMS and ranked

accordingly. The SME can then decide which of these matching profiles they wish to

work with. At the same time the seniors are also able to decide which of the matching

companies they wish to work with. The SME then contacts the user and invites them

into the ICAW to collaborate.

Within the senior user matching selector, the senior is provided with 2 options:

 The chance to accept (or reject) a collaboration request from an SME (as

detailed above). Should the user accept, then they are invited to

collaborate in the ICAW along with the SME. Should they reject then the

SME is notified and can then choose another potential match.

 The chance to browse current opportunities that the system calculates

that the user has a high matching score with. The user can then contact

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

15

the SME and request a match which, if accepted, they can both

collaborate.

The user can also view current matches and have the opportunity to accept

reject any jobs they have been matched with. As Figure 7 shows the current step of the

collaboration process is displayed in a very graphical way to improve user readability.

Figure 7. SMS GUI

3.4 Interface Skill End User (ISEU)

The interface Skill End User (ISEU) is the GUI that enables companies to:

 Set up/amend profile

 Add job opportunities

 View current matches

 Select users and invite them to collaborate.

The ISEU allows the company to input a company profile which will be stored in

the Knowledge Base (KB). It also allows the user to input a job opportunity and include

a list of required skills, which will then be matched by the SMS to give a list of

Matching

percentage by

the SMS

Pending

collaborations

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

16

matching users. This module is really similar to the ISS previously presented for the

senior users.

The main flows encountered during the evaluation leading to the final prototype

design are extracted from D4.6b and summarized in Table 3:

Registration

The process of finding a match could have been a bit faster without too much details to fill in during

the registration

The registration process seemed a bit long, and they were not sure which information would be shared.

Not all fields should be obligatory

Flow for finding a match

Flow of finding a match could be improved

The matching details could be clarified

The skills tree could be optimized; it was not directly clear

Companies would like to see directly which seniors were using the platform

The flow of the application seemed a bit complicated and could be improved

Table 3. End User Requirements (2)

All requirements presented in Error! Reference source not found.3 have been

addressed as new functionality. The following figures (Figure 8, 9 and 10) show

sequentially: (1) Reduced steps needed for registration process (2) Available seniors of

the platform during the matching process (3) Search engine easing the matching

process

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

17

Figure 8. ISEU GUI with simplified obligatory fields

Figure 9. Search GUI with available users

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

18

Figure 10. Opportunity creation GUI

3.5 Adaptive Group Space (AGS)

The GroupSpace is the central location to support companies and their teams of

experts in their day-to-day collaboration. Companies can ask for support, and both

company members and experts are facilitated in communication, coordination and

compensation. Functional requirements include:

 Message system to interact with other GroupSpace members

 Calendar for appointment management

 File sharing

 Task management system allowing for an easy task assignment

The workspace consists of different elements (Error! Reference source not

found. 11 and Error! Reference source not found. 12). Requests can be used for task

management. Within the collaborative agenda, the team can manage and share their

appointments. Contacting each other is made easy with the group messages. The

messages are sent to the entire group. It is also possible to share documents.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

19

Figure 11. Group Messages

Figure 12. Files sharing system

The Adaptive Group Space can adapt itself to the cognitive conditions or physical

limitations. The Elders-Up! system addresses these varying user capabilities by offering

adaptation.

More details and requirements can be found in D3.8 Collaborative and adaptive

workspace 2nd Prototype.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

20

3.6 Self-Reporting Collection (SRC)

The main goal of the Self-Reporting Collection (SRC) is to manage the different

questions that will be asked to the End-user. The general architecture designed for this

module can be seen in Figure 13.

Figure 13: Self-Reporting Collection structure

As we can observe the SRC module communicates with the ICAW, which

generates the necessaries interfaces for the SRC and with the Data Manager (DM) to

output detected problems with the user.

Two modules are in charge of managing communications, Web Service and

Client:

 Web Service: This module provides ICAW with services relative to

questions supply that will be asked to the user besides it will feature a

service for gathering the responses from users.

 Client: This module is in charge of making requests to another Web

service from the Data Manager to send parameters that are used to

identify an impairment from senior users though the specific problem is

not decided here.

The most important module within the SRC is the Logic Layer which has the

application logic and it is the part of the system that decides which type of questions

should show to the user.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

21

Questions are stored in an internal data base and the logic layer responsible for

managing these questionnaires inside the data base is the Data Layer.

For a complete description of the module please refer to D3.3 and D3.4.

3.7 SRC Forms (SRC GUI)

SRC Forms is the section of the ICAW that handles the graphical user interface

from the SRC. Different forms composed in the SRC stages are visualized through these

custom interfaces generated dynamically for each user based on its profile. The main

characteristics of the interfaces composed of several forms are determined aiming at

the user convenience. The main functional requirements of the interface adaptation

process are:

 Brief questions with no dense elaboration.

 Question address in a simple way the possibilities of adaptation regarding

letter size and background contrast

Several improvements have been made to address this previous points as shown

in Figure 14 below.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

22

Figure 14. SRC GUI

3.8 Sensor Data Collection (SDC)

The main role of the module Sensor Data Collection is to collect the information

coming from the different sensors and perform the pre-analysis of the data obtained,

the goal is to provide the user with an smart system able to adapt automatically

according to the user interaction. This module is based on three main blocks. For a

complete and detailed description of this module please refer to D3.3 and D3.4.

3.9 Data Manager (DM)

Data Manager is the module where data coming from SRC and SDC is merged

and processed. In Figure 15 we can see the general architecture of the Data Manager

module. Data manager functional requirement have not suffered any changes from

P1.0 onwards.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

23

Figure 15: Elders-Up! DM System

3.10 Adaptation Decision Maker (ADM)

The Adaptation Decision-Maker (ADM) decides and selects the best

configuration of the Interface Collaborative Adaptive Workspace (ICAW) to visually

display the information to end users while fitting their preferences and helping them

to overcome limitations (e.g. visual impairments or cognitive limitations) and

empowering their engagement in working collaboratively with others through the

Elders-Up! platform.

Updates integrated in the final prototype are:

 Move from standalone adaptation decision making service to integrated

component of the Elders-Up! Platform (within the web browser)

 Algorithm improvement and adaptation features prioritization

 Updated Knowledge Base data model and integrated the data access layer

component

 Added a decision tree algorithm for style generation

 Adjustments to the data and interaction flow

 Adjusted data and interaction flow

The final ADM design architecture is shown in Figure 16. Additionally, Figure 17

shows an example of an adaptation performed thanks to the module decision making.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

24

For a complete description of the ADM and the internal functioning please refer to

D3.6.

Figure 16. Adaptation Decision-Maker design

Figure 17. Example of adaptation solution and associated ICAW UI

3.11 Skill Matching Service (SMS)

The main objective of the Skills Matching Service (SMS) is to cross-compare the

skills offered by the elderly end users and those required by the small companies and

start-ups with the goal of finding an optimal match. Figure 18 shows the logical

architecture and relation to other components.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

25

Updated features implemented into the second prototype are:

 Implemented a more efficient version of the 1-to-1 Skills Matching algorithm

 Implemented a new algorithm for constructing the multidisciplinary

workforce of seniors for a job offer (N-to-1 Skills Matching).

 Implemented the skill discovery from free text functionality, this has been

implemented using text pre-processing and multiword predefined patterns

for new skills identification.

 The Added language clustering for both 1-to-1 Skills Matching and N-to-1

Skills Matching

 Added a dynamic threshold for the results provided by 1-to-1 Skills Matching

Figure 18.Final module logical architecture and relation to other Elders-Up! Components

A full description of the module, architecture and algorithms is described in D3.2.

3.12 Skill Recognition (SR)

The skill recognition module (SR) is the interface which allows the SME to input

the opportunities into the KB along with the skills required and can be seen in Figure

19.

The SME enters the required skills via the taxonomy system similar to that which

has been developed for elderly users to enter their skills. The tree system means that

branches as well as leaf nodes can be selected. This means that the SME can be exact

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

26

in their skill requirements or more general. The branch would then include a subset of

skills which are then ranked and matched within the SMS accordingly. (i.e. exact skill

matches are ranked higher than subset skill matches).

This job opportunity, once entered is then stored in the KB and is also processed

in the SMS to feedback matches to the SME.

Figure 19. SME GUI for entering skills requested for a job opportunity

3.13 Knowledge Base (KB)

The knowledge base is the database that stores all of the user profile information, the

taxonomy of skills, job opportunities and sensor data collected by the SDC. It consists

of four primary data tables, storing data specific to users, along with several ancillary

tables storing data used by the application itself (e.g. the skills taxonomy and list of

languages) and some pivot tables that enable the use of many-to-many relationships.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

27

Figure 20. Knowledge base logical connection to other components with in/out flow of the information
direction between modules.

Figure 20 shows the principal modules that interact with the KB. Namely

 Interface Skill Senior (ISS)

 Data Manager (DM)

 Adaptation Decision Maker (ADM)

 Skills Matching Service (SMS)

 Skills Recognition (SR)

Data flows from other modules into these and then in and out of the KB. For a

detailed description of the whole system please refer to D3.5.

3.14 Mailing System (MS)

The mailing system takes care of the communication of the system to the users,

senior experts and company users. It is meant to motivate and involve users in the

Elders-Up platform. In some cases, it is aimed at inviting users to respond to an

invitation: e.g. invite for the following group space or appointments. In other cases it is

to update users of what is happening in the group space: e.g. these requests have

been performed and these messages have been send (Figure 21 and Figure 22).

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

28

Technically the mailing system works in two ways: either send invitations or

notifications are done upon user input. So the mailing system exposes a few functions

that can be triggered by other modules. Informing about the status of the system is

triggered from within the Mailing System. It sends this information when a remarkable

event occurs, e.g.: a registration or collaboration match.

Figure 21. Email notification sent by the platform

Figure 22.Email notification sent by the platform (2)

3.15 Tutor

The tutor is the module in charge of delivering assistance

both on user request and in case assistance is deemed

necessary. Figure 23 shows the button to receive help on

demand.

The tutor helps users to do any task that can be performed within the Elders-Up!

In two different ways; by an easy “step by step” based in short descriptions and item

Figure 23. Tutor help button

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

29

highlighting and by videos of the task recorded by an expert user. For that purpose, it

needs to interact directly with the front-end, which is why a JavaScript based model-

view-controller was designed in order to be able to show instructions, record times,

highlight elements, and check interactions. The system architecture of the tutor is

shown in Figure 24.

Figure 24. General architecture of the tutor module

The main menu GUI is shown in Figure 25, from that menu the user is able to

select the different sub-actions inside the platform. Help provided to the users is also

context sensitive, meaning that the functionalities and help shown are based on the

flow of the user is in. For a complete description of the module along with obtained

functionalities and description of the internal algorithms and architecture please refer

to D3.4.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

30

Figure 25. Tutor main menu

3.16 MediForm (Form Manager)

MediForm is a separate module which allows the end user to enter personal

information on their subjective wellbeing and their perception on the platform. The

module was created based on the discomfort from some users to answers questions

about their possible disabilities or impairments inside the general questionnaires

delivered by the SRC. Using the MediForm module, the platform emphasizes that the

questions are voluntary, anonymous, and not required to Elders-Up!

The MediForm module is an external tool which can be used to collect data

through questionnaires and potentially through interactive games, and has been

developed to support the user evaluations (Figure 26 shows the main page). The

module will not be part of the Elders-Up! platform when it is used in a commercial

setting. The module can generate statistics regarding for example usability, user’s

behavior, and engagement with the platform.

Figure 26. MediForm main page

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

31

MediForm is built using a MVC architecture with Spring, using Struts2 to create

dynamic forms. MediForm is a completely independent module, allocated out of the

Elders-Up! platform, what means that it acts transparently to the platform. Figure 27

shows a class diagram of the solution.

Figure 27. MediForm platform schema

For a complete description of the system refer to D3.4.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

32

4 SYSTEM INTEGRATION

In this section the final system architecture designed and implemented for the

Elders-Up! Prototype is depicted. For the development of the platform a MoSCoW

technique have been selected to classify the most important features, thus the

characteristics have been classified depending on its priority and has been

implemented sequentially throughout the project.

4.1 System Architecture

The Elders-Up! Platform has moved from a centralized server architecture

(foreseen in the platform mock-up) to a distributed architecture (Figure 28) in order to

ensure the protection of IP for the developed modules and to allow a better load

management. For the final prototype two main servers have been prepared for the

platform and an additional one to host the home page of the platform.

The first one (Located on Idener network) and referred as EUP-SERVER-1 from

now on, stores the different services developed by the consortium, the main system

database EUP-DB-1, and the views associated with the services and profiles of the

users. EUP-SERVER-2 (Located on CCare network) operates as a gateway to access the

EldersUp! Platform, offering the registering services, serving the HTML pages and

including all the functionalities integrated in the GroupSpaces. The following figure

depicts the changes in the architecture from the first concept to the current

implementation:

 Figure 28.Final Elders-Up! global system
architecture

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

33

The application has been developed as a full compatible HTML5 dynamic web

page applying a responsive design. This guarantees usability and compatibility with a

wide range of devices (computers, mobile phones/tablets, etc.).

Regarding security, personal information of the user is treated confidentially and

several security measures have been integrated in order to satisfy user expectations.

In the first prototype, the communication of the users with the platform is made

through an un-encrypted http regular connection. Both EUP-SERVER-1 and EUP-

SERVER-2 have been set-up taking into account security concerns in order to assure

personal data protection. For final prototype, the communication between the server

and the devices has been encapsulated in a secure session, using https protocol.

Further improvements on this area have also been developed as database encryption

techniques and SQL injection prevention.

To host all the services that are to be provided, the following detailed technical

infrastructure is being used:

EUP-SERVER-1: EUP-SERVER-1 is located in the IDENER cloud platform. It runs as

a virtualized server using PROXMOX technology over a quad cored XEON based system

with 32GB of RAM with 2x2 TB Hard disks in RAID configuration. The operating system

is Ubuntu LTS 14.04 64 bit. User accounts for all the developers have been established

and the required software packages have been installed. Specifically, Apache 2 is used

for serving the web-pages with PHP module enabled and PHP 5 installed. MySQL

database server is used for DB handling. Tomcat 8 has been deployed to support JAVA

services.

EUP-SERVER-2: EUP-SERVER-2 is within the cloud platform of Movements Group.

It is a virtualized server running Microsoft Windows Web Server 2008 R2 and has 4 GB

of RAM. All the user accounts for the developers are established. The virtual machine

runs JAVA 8, Tomcat 7 and MySQL 5.6. Backups are done on a daily basis. The server

runs apache tomcat and MySQL.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

34

For a complete and detail description of the system architecture and the services

delivered on both servers refer to D4.3.

4.2 Application Structure

In Figure 2 a scheme of the Elders-Up! Application architecture is presented. The

list of the different modules is presented in the previous chapter 3 as well as the

different inputs and outputs. In the next paragraphs some details regarding how these

modules are being integrated is provided.

4.3 Interconnection between modules

The information exchanged with the users is performed through a series of

interfaces designed to fulfil user requirements. Therefore, two different GUI (Graphic

User Interfaces) have been developed, one for each of the target groups of the

application.

In order to properly process the users’ information, different services have been

implemented: the Skill Matching Service (SMS), the Sensor Data Collector (SDC), the

Adaptation Decision Maker (ADM) and the Adaptive GroupSpace (AGS). New modules

added in the system architecture are the MediForm online questionnaire and the

Tutor. More information regarding these services is provided below in the

corresponding sub-sections. Additionally, the application handles the offline (i.e.

email) communication with the user through the Mailing System (MS) which has been

developed for the final prototype.

All the dynamic contents (HTML pages generated through PHP) are served

through the EUP-SERVER-2 which internally connects to EUP-SERVER-1 to retrieve the

required contents. In the user side, users connecting to the platform through a PC, will

be accessing the HTML5 version of the platform, and therefore will not need anything

special besides an HTML5-compatible web browser.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

35

5 Functional View

This chapter lists system functionalities added in the final Elders-Up! platform.

These functionalities are presented from an end user perspective; what the user can or

cannot perform in the platform.

5.1 Function Specification

The functionalities are grouped in main categories, designated by letters, with a

numbered list of functions in each category, so that we can refer to functions in this

form: A.1, D.4, etc.

A. Manage user account

In order for a primary user to have an account, a profile needs to be created.

A.1. User Registration

An account is created through the Elders-Up! system using an email address and

password for authentication. All end users can enter in their contact details:

A.1.1 First Step: Add personal information.

The first step to registration is for users to fill in their personal information such

as: their first and last name and their email address. Address and contact phone are

optional.

A.1.2 Second Step: Add Employment and Skills.

The second step allows the older adults to add their employments and skills

using a structure of the simple selection (tree based) with all the possibilities which

allow the selection in less than three clicks. Additionally, it is possible to add skills

through a search field incorporating an autocomplete functionality. Both selection

methods are designed in a way to make the selection of skills easy and fast for older

adult users.

A.1.3 Third Step: Tell us about yourself.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

36

The third step allows the user to put the other information such as motivation

and availability. This free text field will be processed from the user input so the

important information for the future matching can be recognized.

A.2. Update your profile

End users can modify any field of the user profile. User can update for example

the address or add a new skill and save it again.

A.3. Sign In

The first action to enter in the platform is to login, so the users can use the

system.

A.4. Sign out

If the user wants to leave the Elders-Up! system he/she can sign out. When the

user goes out of the platform the previous temporary private information of the user is

deleted, so he/she needs to sign in if wants to use the platform again.

B. Primary Actions

Primary actions are those which are not related to any specific job, and can be

accessed from the main menu.

After the login the first window for the user is a Dashboard where end users

(older adults and companies) can choose between the different primary actions in the

platform.

B.1 Show Job opportunities

Users can see the list of suggested job opportunities based on a personalized

match performed by the system. Each of the opportunities has the following

characteristics:

 Percentage of the match between the older adult skills and job opportunity

 Show company’s information and job opportunity

 Skills required for the job

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

37

 The responsible of the opportunity and his/her profile

 Link for chatting with the responsible of job opportunity

 Link to accept the opportunity

 Description and another features of the job opportunity

B.2 Create a GroupSpace

Companies can add in seniors that have accepted a collaboration and create a

new workspace where this previously contacted senior can collaborate with them.

B.2.1 View job opportunities

Companies can see the different job opportunities generated and edit or delete

the existing ones.

B.2.2 Edit job opportunities

Companies looking at job opportunities can press the edit button and a form

appears where company can change the details and save it again.

B.2.3 Delete job opportunities

Companies can delete the job opportunity, removing the job opportunity from

the system will update the current list removing the opportunity deleted so it is not

shown any more to the older adult user.

B.3. Enter to GroupSpace

In the dashboard the user has the option to enter a GroupSpace previously

created by the company which they have been invited to.

This GroupSpace will provide the user with the necessary tools to collaborate

with the companies and other seniors added in by the company.

B.4 Search for companies or experts

The users can use the search engine to look for companies or senior experts. The

search option is available from the dashboard or main page of the Elders-Up! system.

If the user is older adult the option will be a company search, for companies the option

will be senior search.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

38

B.5. Tutor

The tutor is located in the upper right corner of the dashboard. This module

offers help on demand on all the tasks contained in the platform. Additionally, the

tutor will provide help if it detects that the user is lost or disoriented in the platform.

The help is offered via videos or step by step interactive guide.

B.6. Use Request module

The older adult experts can receive collaboration requests from companies

requiring their skills. This module is in charge of the communication between the end

users (older adults and companies). This module is consists of:

B.6.1 Add tasks requests

Create new request and fill in the next values:

- Deadline of the request

- The type of the request (a question, an office task or coaching)

- Assign the request to a team member

B.6.2 Respond to a task request

User can respond to the requests by accepting the invitation or declining the

invitation.

B.7. Success case module

This module shows the successful matches. All the users can enter and see these

matches.

C. GroupSpaces

GroupSpace is the environment inside of the platform where the users are

interacting between themselves regarding the specific job opportunity.

During the first time visit introduction modals explain each functionality to the

end users.

Inside of each GroupSpace the user can see the different objects and attributes:

 Members group and their contact details

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

39

 Group messages

 See the To-do-Tasks and see status of task process

 Documentation repository

 Calendar

C.1 Manage GroupSpaces

A company administrator is be able to manage the settings for a workspace, e.g.

manage who has access to the workspace, and what information is available to them.

 C.2. Send messages

Share pictures and text with other members of the GroupSpace in the platform.

C.3. Send email

The platform can show a link to the external e-mail client with the recipient to all

members of the GroupSpace. This way users within the GroupSpace may email the

other members in an easy manner.

C.4. Start voice communication

All users can start video conversations with other members using the

GroupSpace that is linked to the skype.

C.5. Start video Communication

This option has been discarded

C.6. Make and track appointments

All users can create and follow up created appointments. Actions available within

this module are:

C.6.1. Create appointments (one-time and recurring events)

To create an appointment the user needs to fill in the next fields:

 Set date and time for the appointment

 Select a team member

 Join an appointment

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

40

C.6.2 Accept invitations

All older adult experts can accept the invitations sent by companies.

C.7. Show a calendar common in the GroupSpace

All appointments appear in the calendar that is accessible for all the users that

are members of the specific group (with the same job opportunity) of the workspace.

C.8 Use file sharing module

All users can share files inside of this module available for each GroupSpace.

Allowed operations are:

C.8.1 Add or remove Files

Users can add new or remove existing files in the shared repository.

C.8.2. add or remove folders

This option has been discarded on the final prototype.

C.8.3. Edit shared files

Users can edit existing files on the platform repository.

 C.9. Invite new members (only for companies)

Users that represent the company can invite new members to the GroupSpace.

Invited users are older adults who can collaborate with a certain company.

D. Others Actions

With the term other actions, we assume those which are not mentioned above,

like for example functionalities executed automatically by the system on the

background context.

D.1. Update notifications through e-mail

Users are informed through e-mail about the progress of the job opportunity

where he/she collaborates. This service will keep the users up to date.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

41

D.2. Adapt the user interface manually

The user can change his/her interface appearance at any time. Those changes

include the background colour and letter size.

D.3. Adapt user interface automatically

Through the data gathered from sensors and user interaction with the platform,

this can decide an adaptation of the platform, this includes background colour, letter

size and layout.

D.4. Match Skills automatically

Elders-Up! system matches automatically the needed skills from the job

opportunity published in the platform with the ones that the older adult has in his/her

profile. Job offers and skills provided by the user are saved in the Knowledge base

from where Skills matching Service (SMS) module uses this information to find the

most accurate match.

5.2 Functionality Priority

Table 4 lists all the functionalities specified, along with priorities for the

implementation of these functions in the Elders-Up! System that has been taken into

account in order to decide upon the final features.

Priority values: System Components:

1: Priority for the first prototype.

2: Priority for the final prototype.

3: Low priority –by the end of the project, but not essential.

Code Functionality Priority

A.1 User registration 1

A.1.1 Add personal information 1

A.1.2 Add Employment and Skills 1

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

42

A.1.3 Tell us about yourself 1

A.2 Update your profile 1

A.3 Sign In 1

A.4 Sign Out 1

B.1 Show the job opportunities 1

B.2 Create a GroupSpace 1

B.2.1 View Job opportunities 1

B.2.2 Edit Job opportunities 2

B.2.3 Delete Job opportunities 2

B.3 Enter to GroupSpace 1

B.4 Search for companies or experts 1

B.5 Tutor 2

B.6 Use Request module 1

B.6.1 Add task request 1

B.6.2 Respond to a task request 1

B.7 Use success case module 3

C.1 Manage GroupSpaces 1

C.2 Send messages 2

C.3 Send email 2

C.4 Start voice communication 2

C.5 Start video communication 3

C.6 Make appointments & track appointments 1

C.6.1 Create appointments 1

C.6.2 Accept invitations 1

C.7 Show a calendar common in the GroupSpace 1

C.8 Use file sharing module 2

C.8.1 Add and remove files 3

C.8.2 Add and remove folders 3

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

43

C.8.3 Edit Share files 2

C.9 Invite new members 1

D.1 Update notifications through email 1

D.2 Adapt the user interface manually 1

D.3 Adapt the user interface automatically 2

D.4 Skills matching automatically 1

Table 4. Functionality Priority

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

44

6 Use Cases

Based on the functionalities specified in the previous chapters, the most important use

cases have been identified for the older adults and company users.

The following use cases are described using a common table schema. The main section

is the Main Flow, where the use case is broken down into an ordered list of steps.

Some use cases are restricted to certain users. The following table describes each use

case and its possible actors.

Use Case Type of user

1. Create and configure an account All users

2. Sign In All users

3. Sign Out All users

4. Update your profile All users

5. Accept the job opportunity Older adult user

6. Enter in a GroupSpace All users

7. Search for a match All users

8. Use Tutor Older adult user

9. Create job opportunity Company user

10. Response to a task request All users

11. See successful collaborations Company user

12. Create GroupSpace Company user

13. Send messages or images All users

14. Send emails All users

15. Make appointments & track appointments All users

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

45

16. Accept/Reject invitations All users

17. Check shared calendar All users

18. Add or remove files All users

19. Edit shared files All users

20. Invite new members Company users

21. Adapt the user interface manually All users

22. Adapt the user interface automatically Older adult users (indirectly)

Table 5. Use cases and types of actors

6.1 Use Case: Create and configure an account

Use Case Number 1

Use Case Name Create and configure account

Actors End Users and Elders-Up! system.

Summary Covers all the steps of creating and configuring an Elders-Up! account
through the Elders-Up! app.

Trigger / intent User enters the Elders-Up! system front-end.

Pre-conditions  The primary user is not yet registered in the system, but wishes to
be a user of the Elder-Up! system.

 The primary user has an email address not registered in the system.

Flow of events:
(Main Flow)

1. The user enters a username and password.
2. Elders-Up! system checks if there is no user id that uses the same

username (or email).
3. Enter personal information.
4. Enter Employment and Skills.
5. Enter Tell us about yourself.
6. Elders-Up! system adds this new user to the Elders-Up! database.
7. The Elders-Up! system shows to the user that user's account has

been created successfully.
8. The Elders-Up! System sends a confirmation e-mail to confirm the

registration

Alternative flows 1. User is requested to choose another password and name.
2. Password and name don’t match the correct format
3. User leaves the Elders-Up! system.

Exceptional flows Operation fails: Account creation fails with error message.

Displayed information Form to enter username, password, personal data, skill, CV file.

Post-conditions The primary user has a configured account in the system, and may start using
Elders-Up! collaboration platform.

Relation to other use
cases

None of the rest of use cases can be performed unless this has been done
successfully.

Table 6. Use Case of “Create and configuration account”

6.2 Use Case: Sign In

Use Case Number 2

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

46

Use Case Name Sign In

Actors End Users and Elders-Up! system.

Summary A registered user wants to use Elders-Up! system and the first step is the sign
in.

Trigger / intent When the user completes the sign in form and presses Sign In button.

Pre-conditions  User must be registered.

 User shouldn’t be signed in.

Flow of events:
(Main Flow)

1. User completes the Sign In form.
2. Presses the Sing In button.
3. The Elders-Up! system checks introduced user and password.

4. If successful, the user can see the main menu of Elders-Up!

Alternative flows 1. User completes the login form.
2. Pushes the Login Button.
3. The Elders-Up! system checks the user and password of the user.
4. If not successful, the user can see over the login screen a

notification with “The credentials are not valid”

Exceptional flows
Displayed information The user can watch main screen.

Post-conditions The user can use the Elders-Up! system.

Relation to other use
cases

This use case cannot be performed unless the use case "Create and
configuration account" has been done successfully.

Table 7. Use Case of “User Login”

6.3 Use Case: Sign out

Use Case Number 3

Use Case Name Sign out

Actors End Users and Elders-Up! system.

Summary A logged user wants to logout Elders-Up! system.

Trigger / intent The user clicks or taps the Sign Out button

Pre-conditions  The user must be logged in

Flow of events:
(Main Flow)

1. The user clicks or taps the Sign out button.
2. Elders-Up! system removes the user session.
3. The Elders-Up! system opens the Sign in screen and the user is

signed out.

Alternative flows

Exceptional flows
Displayed information User can see the Sign in screen

Post-conditions User has to sign in if he wants to use the Elders-Up! system.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 8. Use Case of “Sign out”

6.4 Use Case: Update your profile

Use Case Number 4

Use Case Name Update your profile

Actors End Users and Elders-Up! system.

Summary In his profile, the user can change information about him/her.

Trigger / intent User activates Profile button.

Pre-conditions  The user must be signed in.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

47

Flow of events:
(Main Flow)

1. The user clicks or taps Profile button.
2. A screen with his personal information is shown.
3. The user adds, updates, removes or changes outdated fields.
4. Clicks save button.
5. His profile is updated.

Alternative flows 1. The user clicks or taps the Profile button.
2. A screen with his personal information is shown.
3. The user adds, removes or changes outdated fields.
4. Clicks cancel button or closes the window.
5. His profile is not updated.

Exceptional flows

Displayed information User can see his profile information.

Post-conditions His updated profile can be seen by other users.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 9. Use Case of “Update your profile”

6.5 Use Case: Accept the job opportunity

Use Case Number 5

Use Case Name Accept the job opportunity

Actors End Users and Elders-Up! system.

Summary User older adult accepts a new job opportunity in the search Company
Screen.

Trigger / intent User older adult pushes Accept invitation button.

Pre-conditions  The user must be signed in.

Flow of events:
(Main Flow)

1. User older adult clicks on search for a match.
2. User examine the matching companies and opportunities.
3. If the user agrees, he/she applies for an opportunity.

Alternative flows 1. User older adult clicks or taps view opportunity from the Current
Opportunities List.

2. He reads current opportunity information.
3. User older adult doesn’t confirm interest in the job.

Exceptional flows
Displayed information A description of the current opportunity is shown for the senior expert, the

company that offers it and information about the job.

Post-conditions User older adult can see this new working agreement in his GroupSpace list
once created by the company, and he/she is able to enter it.

Relation to other use
cases

This case cannot be performed unless the user older adult is signed in.
A company user has executed the use case Create a new job opportunity
before.

Table 10. Use Case of “Accept the job opportunity”

6.6 Use Case: Enter in a GroupSpace

Use Case Number 6

Use Case Name Enter in a workspace

Actors End Users, Elders-Up! system.

Summary Signed in user enters to a GroupSpace.

Trigger / intent User is in the Dashboard. Starts this use case clicking link with other links to
“your workspace”

Pre-conditions  User must be signed in.

 User is in the Elders-Up! dashboard

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

48

Flow of events:
(Main Flow)

1. Users sees the GroupSpace list the user is participating in.
2. User selects clicks or tabs on a GroupSpace.
3. The system shows the GroupSpace.

Alternative flows

Exceptional flows 1. The users does not click on a GroupSpace.
2. The elders-up! System does nothing

Displayed information Shows a workspace with its visible content.

Post-conditions User is in the selected workspace.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 11. Use Case of “Enter in a GroupSpace”

6.7 Use Case: Search for a match

Use Case Number 7

Use Case Name Search

Actors Senior Expert and Elders-Up! system

Summary An older adult wants to find a company that needs help based on a matching
percentage or a company user wants to find an older adult to collaborate.

Trigger / intent User is in the Dashboard. Presses Search for a match button to find an older
adult or a company.

Pre-conditions  User must be signed in.

 User is in the Elders-Up! dashboard

Flow of events:
(Main Flow)

1. User presses Search for a match button from the Dashboard.
2. The system shows all possible opportunities along with a matching

percentage
3. User select the desired match
4. User selects a person or company clicking on Show interest.

Alternative flows 1. User presses Search button from the Dashboard.
2. The system shows all possible opportunities along with a matching

percentage
3. The system can’t find a result.
4. User returns to Main menu.

Exceptional flows 1. User presses Search button from the Dashboard.
2. User leaves search and returns to menu.

Displayed information A list of users or companies.

Post-conditions Older adult has found a company or a company has found an older adult.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 12. Use Case of “Search”

6.8 Use Case: Use Tutor

Use Case Number 8

Use Case Name Use Tutor

Actors End Users, Elders-Up! system.

Summary A tutor menu located in the upper right corner provide assistance for the
actions available in the platform

Trigger / intent When the user begins use with the coaching module

Pre-conditions  User must be signed in.

 User is in the coaching module.

 User is an older adult.

Flow of events: 1. User starts Elders-Up! system.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

49

(Main Flow) 2. Tutor is always active in the top of the dashboard. It shows relevant
actions for the older adult and actions that should be completed.

3. User interacts with tutor module completing some actions.

Alternative flows 1. User starts Elders-Up! system.
2. Tutor module is always active in the top of the dashboard. It shows

relevant actions for the older adult and actions that should be
completed.

3. User doesn’t interact with tutor module completing some actions.

Exceptional flows 1. User starts Elders-Up! system.
2. User disables the tutor, in this case it will stay disabled for future

sessions.

Displayed information Helping information and suggestions for the user. This is useful for a better
user experience.

Post-conditions If the user clicks on the tutor icon, new interfaces showing the tutor menu
will appear.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 13. Use Case of “Use Tutor”

6.9 Use Case: Create job opportunity

Use Case Number 9

Use Case Name Add request

Actors End Users, Elders-Up! system.

Summary In this use case new job opportunities are created by a company.

Trigger / intent Company user pushes add requests button in the requests interface.

Pre-conditions  Sender and receiver of the request must be registered

 Both users are in the same GroupSpace.

Flow of events:
(Main Flow)

1. Company user click on Search for an expert.
2. Company click on Ass new search profile.
3. Company completes information regarding the new request.
4. Company pushes create opportunity button.
5. Elders-Up! system publish a new request that can be applied by

senior experts.

Alternative flows 1. Company cancels the process.

Exceptional flows
Displayed information An interface showing information for a new request:

-Tittle
-Description
-Skills sought
-Start date
-Competences
-Languages

Post-conditions The users can see the offered collaboration in the Search for a match module

Relation to other use
cases

This case cannot be performed unless the user is signed in. User must have
accepted a job opportunity.

Table 14. Use Case of “Add requests”

6.10 Use Case: Response to a task request

Use Case Number 10

Use Case Name Response to a request

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

50

Actors Senior expert, company, Elders-Up! system.

Summary User older adult is assigned a task by another user or the company

Trigger / intent User older adult pushes a request in the Requests menu and selects Read
request.

Pre-conditions  Both users are registered.

 A user company has sent a request.

 Both users are in the same GroupSpace

Flow of events:
(Main Flow)

1. Expert receives a task notification with a request.
2. The expert clicks on the request inside his/her GroupSpace
3. The expert accepts or rejects the request.
4. The request is shown to be confirmed or rejected by the senior

expert

Alternative flows

Exceptional flows

Displayed information A notification of the task assigned along with a description of this task

A pop-up menu when clicking on the task with possibility of accepting,
rejecting or editing the task

Post-conditions Both users have the tasks in the accepted requests menu.

Relation to other use
cases

A company has sent the request in Add request use case.

Table 15. Use Case of “Response to a request”

6.11 Use Case: See success cases

Use Case Number 11

Use Case Name See success cases

Actors End Users, Elders-Up! system.

Summary Some companies success cases of Elders-Up! system are described in this use
case. Information about users or companies is not shown in this use case.

Trigger / intent Company pushes the button Success cases in the dashboard.

Pre-conditions  User is signed in.

Flow of events:
(Main Flow)

1. Company clicks success cases button
2. Elders-Up! system opens a new screen showing the anonymous

success cases.

Alternative flows

Exceptional flows
Displayed information A description of the most important success cases.

Post-conditions User company has seen Elders-Up! system success cases.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 16. Use Case of “See success cases”

6.12 Use Case: Create GroupSpace

Use Case Number 12

Use Case Name Create Job opportunities

Actors Company, Elders-Up! system.

Summary A user company wants to create a new GroupSpace with one or more seniors
for a job opportunity previously created

Trigger / intent Starts when the Company presses Create a GroupSpace in the dashboard.

Pre-conditions  User must be signed in.

 The Company requires particular skills.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

51

Flow of events:
(Main Flow)

1. Company pushes Create new GroupSpace in the Main Menu.
2. The system opens a window with an application form to fill it with

the name.
3. Company sees the recently created GroupSpace and can invite new

members.
4. To invite new members, the company clicks on the “+” icon nect to

contacts.
5. The system sends an invitation to the invited members

Alternative flows

Exceptional flows
Displayed information The system reports the GroupSpace creation to the user.

Post-conditions GroupSpace is generated.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 17. Use Case of “Manage workspaces”

6.13 Use Case: Send messages or images

Use Case Number 13

Use Case Name Send messages or images

Actors End Users, Elders-Up! system.

Summary All users can send messages or images to all other members of the
workspace.

Trigger / intent User clicks Send button in Messages interface in the groupspace.

Pre-conditions  User has to be signed in.

 Sender and receiver are in the same groupspace.

 Sender is logged in.

Flow of events:
(Main Flow)

1. User opens Messages screen.
2. Writes the message in type message. User can also add an image.
3. Clicks send.
4. Elders-Up! system adds the message to the messages in the

groupspace.

Alternative flows 1. User opens Messages screen.
2. Writes the message in type message. User can also add an image
3. The user doesn’t click Send
4. The system doesn’t send the message

Exceptional flows

Displayed information

Post-conditions The message is added to the message list of the group space.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 18. Use Case of “Send messages or images”

6.14 Use Case: Send emails

Use Case Number 14

Use Case Name Send emails

Actors End Users, Elders-Up! system.

Summary All users can send emails to other members of the groupspace.

Trigger / intent User clicks opens the profile of a person in the groupspace.

Pre-conditions  User has to be signed in.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

52

 Sender and receiver are in the same workspace.

Flow of events:
(Main Flow)

1. Selects a user to send him the mail.
2. Pushes the send email button.
3. An external mail client opens with a predefined recipient. This email

client handles the rest of the interaction with the user.

Alternative flows 1. Selects a user to send him the mail.
2. Pushes the send email button.
3. An external mail client opens with a predefined recipient.
4. The user closes the email client. No message has been send.

Exceptional flows

Displayed information

Post-conditions Receiver has the new message in his email inbox.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 19. Use Case of “Send mails”

6.15 Use Case: Make appointments & track appointments

Use Case Number 15

Use Case Name Make & track appointments

Actors End Users, Elders-Up! system.

Summary All users can create or follow appointments.

Trigger / intent User pushes Appointments button in the workspace.

Pre-conditions  User has to be signed in.

 Both users have to be in the same workspace.

Flow of events:
(Main Flow)

1. User clicks Appointments button.
2. User opens a form to generate an appointment.
3. User fills in the form.
4. User selects other users that can track the appointment.
5. Selects a date.
6. Saves the appointment.
7. The system registers the appointment and shows it in the Elders-

Up! system calendar.
8. Other users can accept or refuse an appointment.

Alternative flows

Exceptional flows

Displayed information Elders-Up! system shows in the calendar the registered appointment.

Post-conditions The appointment was registered.

Relation to other use
cases

This case cannot be performed unless the user is signed in.

Table 20. Use Case of “Make appointments & track appointments”

6.16 Use Case: Accept/Reject invitations

Use Case Number 16

Use Case Name Accept/Reject invitations

Actors End Users, Elders-Up! system.

Summary User accepts or rejects appointment invitations

Trigger / intent User can select a new appointment in Agenda..

Pre-conditions  User is signed in

 Another user has created an appointment inviting him/her.

Flow of events:
(Main Flow)

1. User selects an invitation.
2. A confirmation message is shown.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

53

3. User accepts the appointment.
4. The updated appointment is stored in agenda.

Alternative flows 1. User selects an invitation.
2. A confirmation message is shown.
3. User rejects the appointment.

Exceptional flows
Displayed information Information about the invitation and two buttons; OK and cancel.

Post-conditions The system registers the accepted or refused invitation.

Relation to other use
cases

An appointment must have been created in the “Make & track
appointments” use case.

Table 21. Use Case of “Accept/Reject invitations”

6.17 Use Case: Check shared calendar

Use Case Number 17

Use Case Name Check shared calendar

Actors End Users, Elders-Up! system.

Summary User sees his appointments in the calendar.

Trigger / intent User pushes Appointments button.

Pre-conditions  User has to be logged in.

Flow of events:
(Main Flow)

1. User pushes Appointments.
2. Elders-Up! system opens Agenda.
3. The system shows the calendar shared in the workspace.

Alternative flows

Exceptional flows
Displayed information A calendar with accepted and invitations of new appointments is displayed.

Post-conditions User is in a window that allows him to see the shared calendar.

Relation to other use
cases

Table 22. Use Case of “See the common calendar”

6.18 Use Case: Add or remove files

Use Case Number 18

Use Case Name Add or remove files

Actors End Users, Elders-Up! system.

Summary User adds or removes files in File Sharing screen. In the file sharing system a
folder for each project has been created. Every type of user can add or
remove a file.

Trigger / intent User pushes add file button to create a new file in a shared project.
User selects a file and pushes remove button to delete a file from a shared
project.

Pre-conditions  User has to be signed in

 To add or open files of a project he has to be part of it.

Flow of events:
(Main Flow)

1. User pushes file sharing.
2. Elders-Up! system opens File Sharing interface.
3. User pushes add new file.
4. Elders-Up! system opens a window where the user can search and

select the file he wants to upload.
5. User selects the file and clicks upload.
6. Elders-Up! system creates the file in the folder.

Alternative flows 1. User selects a file.
2. Pushes delete button.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

54

3. Elders-Up! system opens a confirmation message to delete the file.
4. User accepts to delete the file.
5. Elders-Up! system removes the file from the folder.

Exceptional flows
Displayed information A folders and files structure.

Post-conditions Files were added/deleted from the shared folder.

Relation to other use
cases

Table 23. Use Case of “Add or remove files”

6.19 Use Case: Edit shared files

Use Case Number 19

Use Case Name Edit shared files.

Actors End Users, Elders-Up! system.

Summary User edits a file from the file sharing interface. Every user can edit a file of a
shared workspace.

Trigger / intent User double-clicks a file (or press the button “Open file” when the file is
selected)

Pre-conditions  User has to be signed in

 To edit a file of a project he has to be part of it.

Flow of events:
(Main Flow)

1. User double-clicks a file.
2. Elders-Up! system opens the file.
3. User edits the file.
4. User saves the file.
5. Elders-Up! system opens a confirmation message to save the new

file.
6. User accepts to save the changes.
7. Elders-Up! system saves the changes in the file.

Alternative flows 1. User double-clicks a file.
2. Elders-Up! system opens the file.
3. User edits the file.
4. User saves the file.
5. Elders-Up! system opens a confirmation message to save the new

file.
6. User refuses to save the changes.

Exceptional flows -
Displayed information “Last modified by:” and “Modified on:” are updated with new values.

Post-conditions The file is updated in the system.

Relation to other use
cases

Table 24. "Use Case of “Edit shared files”

6.20 Use Case: Invite new members

Use Case Number 20

Use Case Name Invite new members

Actors Company, Elders-Up! system.

Summary Company can invite new members to his group. Those invited users are older
adults who can collaborate with the company.

Trigger / intent User pushes invite new members’ button.

Pre-conditions  User has to be signed in as a company.

Flow of events: 1. User pushes invite new members.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

55

(Main Flow) 2. A list with users is shown.
3. Selects a user.
4. Pushes add new member.
5. Elders-Up! system sends a confirmation message to the user.

Alternative flows

Exceptional flows
Displayed information Elders-Up! system shows the message: “A new request was sent”.

Post-conditions A new member’s request is sent to the selected member.

Relation to other use
cases

Table 25. Use Case of “Invite new members”

6.21 Use Case: Adapt the user interface manually

Use Case Number 21

Use Case Name Adapt the user interface manually

Actors End Users, Elders-Up! system.

Summary User opens settings and changes the graphical user interface options.

Trigger / intent User clicks on Settings.

Pre-conditions  User has signed in.

 User must be an older adult user.

Flow of events:
(Main Flow)

1. User clicks Settings.
2. User modifies view settings
3. Elders-Up! system shows the graphical user interface with the new

settings.
4. User confirms changes.

Alternative flows

Exceptional flows

Displayed information A Settings menu interface is displayed.

Post-conditions The system changes the appearance of the graphical user interfaces.

Relation to other use
case

Table 26.Use Case of “Adapt the user interface manually"

6.22 Use Case: Adapt the user interface automatically

Use Case Number 22

Use Case Name Adapt the user interface automatically

Actors Elders-Up! system, older adult

Summary In this use case, Elders-Up! system collects data from the user’s ambient and
situation adapting user’s UI to the detected conditions.

Trigger / intent

Pre-conditions  User has installed Elders-Up! SDC. in his device.

 SDC has registered user’s valid ID.

 User is logged in Elders-Up! application.

Flow of events:
(Main Flow)

1. Elders-Up! system collects user data
2. Elders-Up! system checks collected data to detect potential

problems
3. Elders-Up! system Detects a problem and propose a change of

the graphical user interface
4. The older adult accepts the change
5. The system automatically updates interfaces.

Alternative flows 1. Elders-Up! system collects user data

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

56

2. User interface is not updated.

Exceptional flows
Displayed information

Post-conditions User interface has been automatically adapted for the user.

Relation to other use
case

Table 27. Use Case of “Adapt the user interface automatically”

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

57

7 API Specification

The complete API specification is included in D4.3 Final Elders-Up! Integrated

prototype. In this document will find the APIs developed for the communication

between the different modules and servers. Firstly, the API created for the

communications between EUP_SERVER_1 and the different modules is shown. After

this, the APIs developed for the communication of EUP_SERVER_2 with the different

components is shown. Finally we will find the APIs developed for the following

modules: SMS, SRC, Tutor and SDC.

Commented [IMA1]: Maybe by making a brief summary of
what is included in D4.3 would offer a better view of the API. I know
that it has been moved there, but API appears in the title of D2.7.

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

58

8 List of Figures

Figure 1. The six stages towards final functional requirements in the Elders-Up

user-centric system design methodology .. 7

Figure 2: Elders-Up! application structure .. 10

Figure 3.Personal data .. 11

Figure 4. Senior user skills ... 12

Figure 5.Motivatoin and availability ... 12

Figure 6. Dashboard senior expert .. 14

Figure 7. SMS GUI .. 15

Figure 8. ISEU GUI with simplified obligatory fields ... 17

Figure 9. Search GUI with available users ... 17

Figure 10. Opportunity creation GUI .. 18

Figure 11. Group Messages ... 19

Figure 12. Files sharing system ... 19

Figure 13: Self-Reporting Collection structure ... 20

Figure 14. SRC GUI ... 22

Figure 15: Elders-Up! DM System ... 23

Figure 16. Adaptation Decision-Maker design .. 24

Figure 17. Example of adaptation solution and associated ICAW UI 24

Figure 18.Final module logical architecture and relation to other Elders-Up!

Components ... 25

Figure 19. SME GUI for entering skills requested for a job opportunity 26

Figure 20. Knowledge base logical connection to other components with in/out

flow of the information direction between modules. .. 27

Figure 21. Email notification sent by the platform ... 28

Figure 22.Email notification sent by the platform (2) ... 28

Figure 23. Tutor help button ... 28

Figure 24. General architecture of the tutor module ... 29

Figure 25. Tutor main menu ... 30

Figure 26. MediForm main page ... 30

file:///C:/Users/PO-139/Documents/AAL/Elder's%20up/Ongoing%20deliverables/D2.7/E_up%20D2.7%20Final%20Functional%20Requirements%20and%20API%20Specification%20for%20Services_ISOIN_0.6.docx%23_Toc468893241
file:///C:/Users/PO-139/Documents/AAL/Elder's%20up/Ongoing%20deliverables/D2.7/E_up%20D2.7%20Final%20Functional%20Requirements%20and%20API%20Specification%20for%20Services_ISOIN_0.6.docx%23_Toc468893261

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

59

Figure 27. MediForm platform schema .. 31

Figure 28.Final Elders-Up! global system architecture ... 32

file:///C:/Users/PO-139/Documents/AAL/Elder's%20up/Ongoing%20deliverables/D2.7/E_up%20D2.7%20Final%20Functional%20Requirements%20and%20API%20Specification%20for%20Services_ISOIN_0.6.docx%23_Toc468893266

Elders-Up! / AAL-2013-6-131 D.2.7 Final Functional Requirements and API
specification for Elders-Up! Services / Draft

60

9 List of tables

Table 1. Deliverables and milestones from P1.0 to fina prototype 7

Table 2. End user Requirements ... 13

Table 3. End User Requirements (2) ... 16

Table 4. Functionality Priority ... 43

Table 5. Use cases and types of actors ... 45

Table 6. Use Case of “Create and configuration account” 45

Table 7. Use Case of “User Login” ... 46

Table 8. Use Case of “Sign out” ... 46

Table 9. Use Case of “Update your profile” .. 47

Table 10. Use Case of “Accept the job opportunity” .. 47

Table 11. Use Case of “Enter in a GroupSpace” .. 48

Table 12. Use Case of “Search” ... 48

Table 13. Use Case of “Use Tutor” .. 49

Table 14. Use Case of “Add requests” .. 49

Table 15. Use Case of “Response to a request” .. 50

Table 16. Use Case of “See success cases” ... 50

Table 17. Use Case of “Manage workspaces” ... 51

Table 18. Use Case of “Send messages or images” .. 51

Table 19. Use Case of “Send mails” .. 52

Table 20. Use Case of “Make appointments & track appointments” 52

Table 21. Use Case of “Accept/Reject invitations” ... 53

Table 22. Use Case of “See the common calendar” ... 53

Table 23. Use Case of “Add or remove files” .. 54

Table 24. "Use Case of “Edit shared files” .. 54

Table 25. Use Case of “Invite new members” .. 55

Table 26.Use Case of “Adapt the user interface manually".................................. 55

Table 27. Use Case of “Adapt the user interface automatically” 56

