

AAL Joint Programme

Platform for Ergonomic and motivating, ICT-based
Age-friendly woRkpLaces (PEARL)

AAL-2013-6-091

Public

PEARL i

Project Identification

Project number AAL-2013-6-091

Duration 1st June 2014 – 30th November 2016

Coordinator Univ. Prof. Dr. Manfred Tscheligi

Coordinator Organization AIT Austrian Institute of Technology GmbH, Austria

Website www.pearl-project.eu

Platform for Ergonomic and motivating, ICT-based Age-
friendly woRkpLaces (PEARL)

Document Identification

Deliverable ID: D-4.3.2
Programmable Interfaces and Configuration Management Tools

Release number/date V1.0 02.08.2016

Checked and released by Anton Katov/AAU

Key Information from "Description of Work"

Deliverable Description This deliverable describes the final prototype implementation of the
programmable interfaces and configuration management tools.

Dissemination Level PU = Public

Deliverable Type P = Prototype, R = Report

Original due date Project Month 24 / 01.June.2016

Authorship& Reviewer Information

Editor Anton Katov (AAU)

Partners contributing AAU, SiLO, SENSAP, RRD

Reviewed by Athanasios Moralis (SENSAP)

http://www.pearl-project.eu/

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public PEARL ii

Abbreviations

Abbrev. Description

AAL Ambient Assisted Living

API Application Programmable Interface

ATL Ambient Tuning Layer

BIL Business Intelligence Layer

CBR Case-Based Reasoning

DB Database

DSS Decision Support System

HATEOS Hypermedia as the Engine of Application State

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MVC Model-View-Controller

REST Representational State Transfer

RFID Radio-Frequency IDentification

RSA public-key cryptosystem (Rivest, Shamir, and Adleman)

SHA Secure Hash Algorithm

SSO Single Sign-On

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public PEARL iii

Table of Contents

Abbreviations II

Table of Contents III

List of Tables 4

List of Figures 5

Executive Summary 6

1 About this Document 7

1.1 Role of the deliverable 7

1.2 Relationship to other PEARL deliverables 7

1.3 Summary of changes over the previous version 7

2 Role within PEARL Architecture and System Overview 8

2.1 Requirements of PEARL project 8

2.2 System Overview 8

3 Scenarios and Configurations Management 10

3.1 Account Creation and User Registration 10

3.2 Cross-Authentication 12

3.3 Task Switching and Ambient Configurations Deployment 12

3.4 Message Broker Application 14

3.5 Preference Editing 15

4 Programmable Interfaces and APIs 18

4.1 Account Creation and User Registration 18

4.2 Single Sign-On mechanism for cross-authentication 25

4.3 Configurations retrieval and deployment 29

4.4 Caledula APIs 38

5 Summary and Conclusions 50

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 4

List of Tables

Table 1. Sample Create User Request & Response 25
Table 2. PEARL Task and Time Management Create User Request and Response 27
Table 3. PEARL Task and Time Management Create User Request & Response 27
Table 4. PEARL Physical Well-Being Layer, Create User Request and Response 28
Table 5. PEARL Physical Well-Being Layer, Delete User Request and Response 29
Table 6. PEARL DSS REST API definition 31
Table 7. PEARL Configurations Manager REST API definition 32
Table 8. List of primitives comprising the Switcher Manager API 32
Table 9. Switcher Manager Task Switched API definition 33
Table 10. Switcher Manager Tag User Login API definition 34
Table 11. Switcher Manager Web User Login API definition 34
Table 12. List of primitives comprising the Trigger Manager API 34
Table 13. Trigger Manager Preference Updated API definition 36
Table 14. Trigger Manager User Logged-In API definition 36
Table 16. MessageBroker API definition 37
Table 17. List of public methods exposed in MessageBroker REST API 37
Table 18. MessageBroker REST API definition 38
Table 19. PEARL Task and Time Management Retrieve Calendar Events 40
Table 20. PEARL Task and Time Management Add New Calendar Event 40
Table 21. PEARL Task and Time Management Update Calendar Event 41
Table 22. PEARL Task and Time Management Delete Calendar Event 42
Table 23. PEARL Task and Time Management Retrieve All Registered Users 43
Table 24. PEARL Task and Time Management - Invite User to an Existing Calendar Event 44
Table 25. PEARL Task and Time Management – Respond to Invitation to an Existing Calendar

Event 45
Table 26. PEARL Task and Time Management – Cancel Invitation to an Existing Calendar Event

 46
Table 27. PEARL Task and Time Management Retrieve Tasks 47
Table 28. PEARL Task and Time Management Add New Task 48
Table 29. PEARL Task and Time Management Update Existing Task 49
Table 30. PEARL Task and Time Management Complete Existing Task 49
Table 31. PEARL Task and Time Management Delete Existing Task 50

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 5

List of Figures

Figure 1. PEARL System Overview 9
Figure 2. DSS-based configurations retrieval 12
Figure 3. Ambient Tuning Layer architecture 13
Figure 4. Task switching sequence diagram 14
Figure 5. Ambient Tuning Layer Message Broker Application 15
Figure 6. Preference editing sequence diagram 15
Figure 7. Preference editor UI 16
Figure 8. Preference editing sequence diagram 17
Figure 9. Task Switcher UI for Preference Editting 18
Figure 10. Successful login 19
Figure 11. Successful login 20
Figure 12. Successful login 21
Figure 13. User Authentication Flowchart Diagram 22
Figure 14. PEARL platform registration process 23
Figure 15. Generation of an RSA Key pair 23
Figure 16. Content encryption using the public key 24
Figure 17. Content decryption using the private key 24
Figure 18. PEARL Message Broker monitoring UI. 38

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 6

Executive Summary

The integrated PEARL platform consists of a set of loosely coupled software components,
deployed and managed in a distributed manner across the facilities of the different
partners, thus introducing large variety in terms of utilized technologies and operation
principles. For the provision of a unified service platform in such a scenario, the
development of an efficient configuration management mechanism and standardized
programmable interfaces becomes imperative. For the needs of PEARL we have chosen
to implement a set of RESTful web services coupled with a collection of configuration
management tools, which enable agile and robust exchange of configurations and
application data. In order to fully cover the configurations management capabilities of the
platform we describe the functionalities of the various tools in the context of four major
scenarios – account creation and user registration, cross-authentication, task switching
and ambient configurations deployment and preference editing. The principle of operation
of the major software components, involved in the configurations management process is
further elaborated by examining the related dataflow sequence diagrams. The main
modules related directly or indirectly to the configurations management are indicated to be
the cross authentication mechanism, the decision support system, the preference and user
profile editor, the configuration manager and the message broker, which will be described
in the context of the aforementioned scenarios. This deliverable describes the second
version of the prototype. One major addition as compared to the first prototype version of
the platform setup is the message broker application, which was developed in order to
resolve the connectivity issue between the ATL (Task Switcher / Sensor – Actuator
Manager) and the Workspace & Ambient Configurator and provide unique identification of
user’s workstation by pairing public and private IPs.

Furthermore, we focus on the description of the implementation techniques and the
operation parameters of the major programmable interfaces, developed for the needs of
PEARL. In order to present the design principles of the PEARL programmable interface,
we have described in details the autologin and single sign-on mechanism, account
creation and user registration APIs of the PEARL Task and Time Management and the
Physical Wellbeing modules, the decision support system (DSS) and configurations
manager invocation APIs, the task switcher and the trigger manager programmable
interface. Furthermore, we summarize here the web services, developed for the needs of
PEARL, which enable full control over the Task and Time Management module
functionalities. The aforementioned were primarily developed to enable the communication
with the digital paper calendar prototype – Calendula (see D2.3.2 and D3.2.2). Finally, we
offer summary of our contribution and some concluding remarks.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 7

1 About this Document

1.1 Role of the deliverable

The scope of D4.3.2 Programmable Interfaces and Configuration Management Tools is to
provide a summary of the final version of the configurations management functionalities of
the relevant PEARL platform components and to offer a detailed description of the major
programmable interfaces that enable reliable exchange of configurations and application
data. As such its main purpose is to serve as a reference point for debugging and
improvement of the current software components or development of novel components
and functionalities.

1.2 Relationship to other PEARL deliverables

The deliverable is related to the following PEARL deliverables:

Deliv: Relation

D4.1 System Architecture Specification and Implementation: Deliverable D4.1 provides an
anatomy of the PEARL platform through presenting its architecture and main components.
D4.1 serves therefore as a basis for identifying the placement and basic functionality within
the PEARL architecture.

D2.2 Use Cases, Scenarios and Integrated Functionalities: This deliverable presents integrated
scenarios and use cases and describes the functional specifications of the PEARL
applications. D2.2 serves therefore as a basis for the scenarios that will be used.

D4.2 User, Tasks and Workspaces Databases, Ontologies and Knowledge Bases. This
deliverable provides the information for the data structures used in PEARL centralized
database.

D2.3.2 Final PEARL User Interfaces. This deliverable serves as a basis to guidelines so as to
achieve a user-friendly interface for the components needs.

1.3 Summary of changes over the previous version

When considering the previous prototype version of PEARL’s programmable interfaces
and configuration management tools several major points have to be noted. One of the
major new additions is the design and implementation of the message broker application
that aims to resolve the connectivity issues between the Ambient Tuning Layer and the
Workspace and Ambient Configurator. The principles of operation, the newly developed
message broker APIs and the resulting changes impacting the overall configuration
management system architecture will be described in the following sections. Furthermore,
all relevant components descriptions will be updated in order to accurately describe the
final prototype of the PEARL system. Another major addition as compared to the first
document is the detailed description of the existing as well as the newly developed APIs
for data exchange between the PEARL Task and Time Management module and the
digital paper user interface – Calendula (see D2.3.2 and D3.2.2). The description of the
remaining programmable interfaces has also been consolidated and extended in order to
provide a solid reference point for future debugging or development efforts.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 8

2 Role within PEARL Architecture and System Overview

In the current chapter the major requirements of the PEARL project will be outlined and a
general system overview will be presented, putting the focus on the configurations
deployment and the necessary interfaces.

2.1 Requirements of PEARL project

The implementation of an efficient, agile and scalable configuration management
mechanism and unified programmable interfaces, deployed across the various application
layers, is of primary concern for the fluent operation of the integrated PEARL platform,
because of its modular loosely coupled design, presented in D4.1 System Architecture
Specification and Implementation. The major requirement of the project is to define and
expose a set of standardized APIs, which will facilitate the development of an efficient
decision support system and robust configuration management mechanism. The
configuration management tools should further enable the integrated configurations
deployment across the various application layer modules and should assist in the
integration, development and configuration of new turn-key PEARL solutions. The
development should focus on the following main aspects:

 Enabling unified account creation and user registration to all PEARL modules,
transparent to the user.

 Enabling Single Sign-On (SSO) for accessing all applications with single set of
credentials.

 Implementing web-based APIs that enable action triggers and data exchange
between the various PEARL platform components, where needed.

 Enabling configurations retrieval, distribution and deployment across the holistic
PEARL platform.

2.2 System Overview

The PEARL platform has been designed as a holistic entity that consists of a number of
modules, deployed and managed in a distributed manner across the facilities of the
different partners, resulting in a great variety in terms of development and implementation
techniques and utilized technologies. In this distributed environment a standardized
approach for configurations deployment and data exchange is of primary importance. The
first step towards defining a unified approach that can incorporate the variety of PEARL
application modules was the definition of the PEARL System architecture in “D4.1 System
Architecture Specification and Implementation”. In the current document, we redefine the
interactions of the major components focusing on the configuration management features
and in the following sections we define the main programmable interfaces, developed for
the needs of PEARL.

The general diagram of the architecture is presented on figure 1 below. It consists of three
major entities each comprised of a set of logical components. The bottom horizontal layer
of the PEARL architecture is the PEARL Data Layer which among others integrates the
PEARL database schema and database access and the user management mechanism.
From the view point of the configuration management mechanism the Data Layer is a key
entity as it holds the user profile data and the corresponding configuration plans that
define all major configuration settings of the workspace environment and the PEARL
application layer modules.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 9

Figure 1. PEARL System Overview

On top of the Data Layer is the second horizontal layer - the PEARL Business Intelligence
Layer (BIL), which implements most of the tools, related either directly or collaterally to the
configuration management process – the cross authentication mechanism, the decision
support system, the preference and user profile editor, the configuration manager and the
PEARL Broker Application. The cross authentication mechanism is responsible for
providing SSO for the users across all PEARL application domains. The decision support
system defines customized configuration plans upon registration of new users, thus
facilitating the configurations deployment and improving the overall user experience. The
preference and user profile editors provide ergonomic user interface (UI) for direct
management of the user profile characteristics and configuration settings and are
responsible for triggering the configuration manager and the ambient tuning layer. The
configuration manager’s main function is to distribute and trigger the deployment of new
configuration settings across the various application modules. The PEARL Broker
Application takes care of the parameters mismatch between the Ambient Tuning Layer
and the Workspace and Ambient Configurator, providing an automated mechanism for
mapping public and private IP addresses to a set of configurations, so as to provide
seamless integration between the centralized PEARL data layer and the locally distributed
Workspace and Ambient Configurator agents.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 10

The final major entity of the PEARL holistic platform is the PEARL Application Layer, which
hosts the various application modules. In the context of configuration management a
leading role here has the Ambient Tuning Layer, which is responsible for delivering the
personalisation of the workplace, and for integrating tools that can assist the employee in
tuning the ambient environment based on a combination of software and hardware utilities.

3 Scenarios and Configurations Management

Based on the holistic system architecture and the general platform lifecycle, described in
“D2.2 Detailed Use Cases and Scenarios”, we have indentified the major scenarios that
will be used for describing the different aspects of the configuration management
mechanism. To elaborate further on the application logic of each of the tools we fill further
describe the major data flows in terms of sequence diagrams.

3.1 Account Creation and User Registration

In order for a user to have access to PEARL platform and all its services, s/he must first
create an account and register at the platform. The creation of a user account / registration
of a user can take place in two main ways:

1) The user can manually navigate to the PEARL platform login / registration page and
follow the instructions to create an account or,

2) The user can scan his/her RFID card, which – if the user does not exist and the
specific RFID card has not been associated with any user and is valid - will
automatically redirect the user to the PEARL platform registration page. It must be
noted that in this case, for security purposes, the Tag_ID is encrypted before it is
actually sent to the browser, using a public-key cryptosystem, described below in
chapter 4 of the current deliverable, and thus can only be decrypted by the
authentication mechanism. After a successful registration process, a user can log-in
to the PEARL platform either using the credentials provided or by using the RFID
card.

Upon the first login the user is requested to fill out a number of personal preferences that
directly influence the configurations of his/her workplace environment. In order to enhance
the overall user experience, the PEARL platform implements a decision support system
(DSS), which provides customized configuration plans to the new users, based on their
profile characteristics. The DSS consists of two main submodules: the matchmaker and
the rule engine. The matchmaker is based on the Case-Based Reasoning (CBR)
technique and is powered by myCBR1. It is responsible for matching a set of user
preferences to a similar existing profile and retrieving the relevant configuration plan. The
PEARL Rule Engine is powered by Drools2 and incorporates the case adaptation logic
required whenever a retrieved solution does not satisfy fully the initial user requirements
and needs to be altered. The case adaptation logic consists of predefined IF-THEN rules
that will ultimately customize the retrieved configuration plan to match as closely as
possible the corresponding user profile. For further information regarding the PEARL DSS
implementation and underlying technologies, please refer to “D4.4.2 Decision Support
System and Rule Engines”.

1 http://www.mycbr-project.net/
2 http://www.drools.org/

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 11

In order to provide maximum flexibility during the initial platform configuration phase a
semi-automated operation model will be utilized, allowing the user to either accept the
suggested configuration plan or further modify the settings, based on his/her preferences.
The modification will be possible via the Preference Editor, which provides an ergonomic
UI, adapted for the needs of the elderly employees. The corresponding data flow is
presented on figure 2 and the main steps are summarized below:

1. Initial data input – the new user is prompted to fill out a number of forms defining
his account credentials and a set of personal characteristics.

2. DSS trigger – the input data are stored in the PEARL database and the DSS is
triggered by sending an HTTP GET request with a path variable containing the ID
of the newly created user.

3. Problem retrieval – the user profile characteristics of the newly created user are
retrieved by the DSS by executing a database query based on the user ID. The
resulting data set constitutes the input problem definition for the CBR engine.

4. Case base construction– the CBR case base is constructed by retrieving from the
PEARL database all existing user profiles that have a full set of configuration
settings already defined. An additional parameter, “setConfigurations”, that
indicates the validity of a given database entry is introduced.

5. Case retrieval – the best matching user profile is selected from the case base,
based on predefined similarity functions, provided by myCBR engine. The
corresponding configuration settings are then retrieved from the database.

6. Case adaptation – the retrieved configurations data set is then adapted by the rule
engine based on predefined rules.

7. Adapted solution – the adapted configurations are then passed to the Preference
editor in JavaScript Object Notation (JSON) format and displayed to the user.

8. Solution revision – the user is then prompted to either accept or modify the
suggested configurations via the Preference Editor UI.

9. Case retention – when the configurations are adapted/accepted by the user, the
resulting set of parameters is stored to the database and the setConfigurations
variable is changed, thus indicating that the new case can be included in the case
base in the future.

10. Configurations deployment – the configurations manager and the ambient tuning
layer trigger manager are activated in order to deploy the new configurations.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 12

Figure 2. DSS-based configurations retrieval

3.2 Cross-Authentication

The PEARL holistic platform integrates a number of services, which can be either hosted
and provided centrally, or remotely. The reason for this is so as to enable the platform to
integrate and deliver to PEARL users, services from third party providers. In the current
version of the system, these service providers are partners of the consortium (e.g. RRD
and COMARG), but after the commercialisation of the platform, these could be external
service providers who could provide added value services through the PEARL platform,
hosted however in remote, own premises. Towards this end, the PEARL platform
incorporates a cross authentication mechanism that is responsible for authenticating the
users in all platforms, providing to the users a seamless sign in experience. The secure
authentication mechanism is analysed in chapter 4 of the current deliverable. It relies on a
set of secure REST web services, one to add a user to the platform, and one to delete the
user from the platform, the same web services that are employed during account creation
and user registration. This set of web services safeguards that a synchronised list of users
is always available across all platforms integrated in PEARL.

3.3 Task Switching and Ambient Configurations Deployment

One of the most distinct services, provided by the PEARL platform is the per task
configuration of the workspace environment, provided by the Ambient Tuning Layer.
Through this service, the user is able to define different configurations settings for the
different daily tasks he is involved in (e.g. email communication, text editing,
teleconferencing, etc.) and transform his ambient workspace environment with a click of a
button on the PEARL Task Switching UI. The task switching and the deployment of the
relevant configurations are managed by the task switcher manager, the trigger manager
and the sensors/actuators manager.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 13

Figure 3. Ambient Tuning Layer architecture

Task switcher manager is the component responsible to interact with the user so as to
provide him with the ability of switching tasks. It provides appropriate interfaces so as to
inform the PEARL platform (see Figure above), either directly the Ambient Tuning Core or
the rest of the PEARL components by the use of the Trigger manager interface, for a
change of a task. The Trigger Manager (Figure 3 above), provides the appropriate
interfaces so as to enable the components that interacts with the User (Reader Manager,
Task Switcher) to inform the rest of the PEARL platform that a change has occurred (i.e.
preferences has been updated, a tasks has been switched or a user has logged in).

The User is capable to initiate a different task by hitting the equivalent graphical button on
the dedicated touch screen. The Ambient Tuning Layer (ATL) receives the trigger and
identifies the unique task ID assigned to this specific task, the UserID and the
WorkspaceID. Using this information, The ATL queries the PEARL DB to retrieve the
User’s personal configuration related with the new task which includes general
preferences (e.g., in terms of applications to be used, environment light, availability
indicator etc.), but also of the task he is carrying out (Task configuration plan) and the User
Info (id, name). The ATL passes the TaskID and UserID to the Configuration Manager
through the trigger manager I/F (Figure unterhalb) so as to inform the rest of the PEARL
components for the task change. The ATL undertakes the task to configure the workspace
environment by controlling the available ambient sensors and actuators based on the User
Preferences. Finally the ATL updates the User Task Switcher UI by highlighting the current
task.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 14

Task

Switcher UI

Task
Switcher
Manager

Trigger

Manager

Config.

Manager

PEARL

DB

TaskID

Amb. Tun.

Core

TaskID,
UserID,

WorkspaceID TaskID, UserID,
WorkspaceID

Task configuration plan,
User Info (id, name), TaskID, WorkspaceID

Sensors/
Actuator
Manager

UserID,
TaskID

UserID,
TaskID

WorkspaceID,
Configuration Values

TaskID

Update UI

Sensors /
Actuators
Manager

Task config plan,
WorkspaceID

Figure 4. Task switching sequence diagram

3.4 Message Broker Application

As it was identified during the pre-pilot of the first integrated prototype, network
configurations can impose limitations on the communication between the PEARL local
client integrating the reader manager, the workspace and ambient configurator, and the
rest of the “remotely hosted” components of the PEARL platform. Towards this end, and
because not all personal computers and laptops could have fixed IPs so as to directly
facilitate communication between the reader manager and the ambient and workspace
configurators, the concept of an intermediator, namely a broker was introduced. The main
task of the broker application would be to retrieve the configuration file that was originally
transmitted from the Task Switcher and Actuator Manager to the Workspace and Ambient
Configurator, and properly forward it to the appropriate client (user PC) “hidden” behind a
router forwarding network traffic. In order to facilitate this, the broker application utilises a
unique pair of public and private IPs which uniquely characterise a client. Both the public
and private IPs are retrieved and sent to the broker application through the locally installed
Reader Manager. The conceptual architecture of the Broker Application is graphically
illustrated in the figure below. In section 4.3.5, the authors provide information regarding
the broker REST API used to post the information included in the JSON file from the
Actuator Manager, while the implementation details of the broker application are provided
within the context of deliverable D4.5.2.

In addition to the conceptual approach, the corresponding data flow is presented on the
sequence diagram on figure 6.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 15

Figure 5. Ambient Tuning Layer Message Broker Application

Figure 6. Preference editing sequence diagram

3.5 Preference Editing

After the initial registration the user has defined his/her preferred configuration settings
and the corresponding values have been stored in the database and are available for
retrieval by the DSS and Ambient Tuning Core. During the platforms running phase the
user can access and modify the stored configuration settings via the Preference Editor UI.
The Preference Editor UI is presented on figure 7, for further details please refer to “D2.3.2
Final PEARL User Interfaces”.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 16

Figure 7. Preference editor UI

After the user edits his preferences, the altered settings will be stored in the database and
will be deployed by the Ambient Tuning Core or the Configurations Manager, depending
on what has been changed. If the altered settings concern the ambient environment
configurations or the list of the available tasks, the Ambient Tuning core will be involved. If
the changes involve any of the other application layer modules, the deployment will be
undertaken by the Configurations Manager. The corresponding data flow is presented on
the sequence diagram on figure 8.

The user is selecting the new configurations via the Preference Editor UI. The
configurations are stored in the PEARL database by the Preference Editor and the
configurations manager is triggered by sending the UserID, the TaskID (if applicable) and
the edited configurations parameter. If the changes concern the ambient workspace
environment, the configurations manager initiates the Ambient Tuning Core by sending a
REST call to the Trigger Manager, containing the UserID and the TaskID of the altered
task. The trigger manager provides the necessary interfaces to the Ambient Tuning Core.
The Ambient Tuning Core then retrieves the most recent task configuration directly from
the PEARL database and triggers the Task Switcher Manager and the Sensors/Actuator
manager which the deploy the new configurations.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 17

Figure 8. Preference editing sequence diagram

For improving the platform’s usability and facilitating the users interactions with PEARL an
additional UI for preference editing has been added as a part of the task switching UI. This
offers a direct access for configurations adjustments both related to the general set of
preferences and the specific task related preferences. This allows the user to directly alter
the configurations while switching between tasks. The requested changes will be directly
applied by the Sensors-Actuators Manager via the PEARL Broker Application and saved
to the PEARL database. For further details, regarding the underlying data flow please refer
to section 3.4 of the current document. The UI for direct editing of the workspace
configurations is presented in Figure 9. For more detailed description please refer to
“D2.3.2 Final PEARL User Interfaces”.

If the changes concern any of the other application modules, the configuration manager
issues a REST call to the respective application layer modules.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 18

Figure 9. Task Switcher UI for Preference Editting

4 Programmable Interfaces and APIs

In the current chapter we summarize the web-based APIs that have been developed and
deployed over the various PEARL modules to enable reliable and secure exchange of
configuration and application data. The current chapter will serve as reference for the
future implementation activities and will be periodically updated upon the development of
new APIs.

4.1 Account Creation and User Registration

In order for a user to have access to PEARL platform and all its services, s/he must first
create an account and register at the platform. The creation of a user account / registration
of a user can take place in two main ways:

1) The user can manually navigate to the PEARL platform login / registration page and
follow the instructions to create an account. In this case, the user navigates to the
login page (http://pearl.euprojects.net/login), selects “create account”, and fills in all
the required information.

2) The user can scan his/her RFID card, which – if the user does not exist and the
specific RFID card has not been associated with any user and is valid - will
automatically redirect the user to the PEARL platform registration page.

http://pearl.euprojects.net/login

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 19

When the user scans his/her RFID card, there are three main scenarios that can take
place:

 Scenario 1 (Successful Login): A user has already registered to the PEARL
platform and the ID of his/her RFID card is associated with his/her account. In this
scenario, when the user passes the RFID card over the RFID scanner, the user's’
preferred browser opens, and an auto login request is sent to the PEARL platform.
The authentication mechanism authenticates the user and redirects the request to
the home page of the PEARL platform.

Figure 10. Successful login - 1

 Scenario 2 (Invalid Tag_ID): A user has already registered to the PEARL
platform and an RFID card has been assigned to his/her account, however an
invalid RFID Tag_ID is sent. In this case, the scenario authentication process fails,
because an invalid or a corrupted RFID Tag_ID is sent. The auto login request is
redirected to the login page in order for the user to manually login to the PEARL
platform.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 20

Figure 11. Successful login - 2

 Scenario 3 (User Registration): A user is not registered to the PEARL platform
however a valid RFID Tag_ID is sent. The authentication mechanism cannot match
the RFID with a registered user, thus the auto login request is redirected to the
registration page, so that the user can register to the PEARL platform.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 21

Figure 12. Successful login - 3

The autologin URI required information is provided below:

Method: GET

Parametres: tagID (String), ip (String)

Endpoint: http://pearl.euprojects.net/autologin

*tagID Is BASE64 encoded string containing an encrypted information using asymmetric
key. In addition, the ip parameter is encoded using a basic url encoder.

The aforementioned scenarios can be visualized in the following user authentication
flowchart:

http://pearl.euprojects.net/autologin

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 22

Figure 13. User Authentication Flowchart Diagram

The PEARL platform registration process code snippet is also described in the following
figure:

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 23

Figure 14. PEARL platform registration process

In addition, we also provide the description of the PEARL Platform Public-key
Cryptosystem used for securing the information exchange.

4.1.1 Generation of an RSA Key pair (one time process)

Figure 15. Generation of an RSA Key pair

The encryption process is a three-step process. The first step involves the generation of a
new pair of assymetric RSA (Rivest-Shamir-Adleman) keys, a public and a private one,
based on the RSA cryptosystem, one of which is used by the RFID infrastructure for the

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 24

encryption of the information sent to the PEARL platform (including the TagID and the
public IP of the PC of the user), and the other is used by the PEARL platform in order to
decrypt the received information. The generation of the RSA Key pair is illustrated in
Figure 15.

4.1.2 Encrypt content using the public key

Section 4.1.1 describes the process for the generation of the RSA Key pair. Figure 16
below illustrates the process employed for the actual encryption of the information sent to
the PEARL platform (including the TagID and the public IP of the PC of the user), and for
safeguarding the validity of the content.

Figure 16. Content encryption using the public key

4.1.3 Decrypt content using the private key

Section 4.1.1 describes the process for the generation of the RSA Key pair. Figure 17
below illustrates the process employed for the actual decryption of the information
received by the PEARL platform (including the TagID and the public IP of the PC of the
user).

Figure 17. Content decryption using the private key

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 25

4.2 Single Sign-On mechanism for cross-authentication

Within the context of the implementation of the PEARL platform, and based on the need to
facilitate seamless login for the PEARL users throughout the various platforms integrated
in the holistic PEARL platform, the project consortium has implemented a single sign-on
mechanism. This mechanism allows the user to login to the platform once, either using
his/her RFID card, or his/her platform credentials (user name and password), and have
access to all of the integrated platforms (currently the Task and Time Management module
and RRD’s Physical Wellbeing Platform), without requiring additional logins. The idea
behind the SSO mechanism is that upon a user registration via the PEARL platform, an
identical user with the exact credentials (username, password) is created among the
integrated platforms (Task and Time Management and Physical Wellbeing Portal) via the
provided APIs of each one. The credentials are embedded within the link of each
integrated platform, thus when a user is logged-in to the PEARL platform and clicks a link
which opens a page on an integrated platform, no additional credentials are required. It
must be noticed that for security purposes the credentials which are embedded within the
link of each integrated platform are protected using a secure hashing algorithm (SHA-1).

In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function
designed by the United States National Security Agency and is a U.S. Federal Information
Processing Standard published by the United States NIST. SHA-1 produces a 160-bit (20-
byte) hash value known as a message digest. A SHA-1 hash value is typically rendered as
a hexadecimal number, 40 digits long. SHA-1 is a member of the Secure Hash Algorithm
family. The four SHA algorithms are structured differently and are named SHA-0, SHA-1,
SHA-2, and SHA-3. SHA-0 is the original version of the 160-bit hash function published in
1993 under the name SHA: it was not adopted by many applications. Published in 1995,
SHA-1 is very similar to SHA-0, but alters the original SHA hash specification to correct
weaknesses that were unknown to the public at that time. SHA-2, published in 2001, is
significantly different from the SHA-1 hash function3.

In the following table, a sample „Create User Request“ and „Create User Response“ are
illustrated. Within the context of PEARL, one API (preferably RESTful API following JSON
format for the requests and responses) per platform integrated is required.

Sample Create User Request Sample Create User Response

Table 1. Sample Create User Request & Response

3 https://en.wikipedia.org/wiki/SHA-1

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 26

To illustrate the implementation across the various application modules the RESTful web
services for account creation and deletion of the Task and Time Management module are
presented in Tables 2 and 3 and of the Physical Wellbeing module in Tables 4 and 5.

a) Create new user (Task and Time Management module)

Method POST {root}/ api/user

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username assigned to the application that issues
the REST call.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

addNewUser {

 "userid":"the username of the
new user",

 "lastname":"…",

 "firstname":"…",

 "email":"…",

 "password":"…"

}

Status code,
Object $person

The input is sent in the
body of the request in
JSON format.

Response representations

Response code Response
message

Response body

201 Created {

 "status":"OK",

 "data":{

 "userid":"cska",

 "lastname":"john",

 "firstname":"rest2",

 "email":"john@pear.com",

 "password":"john","id":"10"

 }

}

409 Conflict {

mailto:john@pear.com

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 27

 "status":"ERROR",

 "messages":{ … }

}

 Table 2. PEARL Task and Time Management Create User Request and Response

b) Delete existing user (Task and Time Management module)

Method POST api/deleteuser/{userid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username assigned to the application that issues
the REST call.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

deleteUser String userID Status code

Response representations

Response code Response
message

Response body

200 OK {"status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 3. PEARL Task and Time Management Create User Request & Response

c) Create new user (Physical Well-Being Module)

Method POST {websiteroot}/api/json-rpc.php

API definition and request query parameters

Service Name Input Output Info

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 28

adduser

{
 “id”: request ID,
 “method”: “adduser”,
 “jsonrpc”: “2.0”,
 “params”: {
 “username”: …,
 “securityToken”: <fixed token>,
 “firstname”: …,
 “lastname”: …,
 “email”: …,
 “password”: …,
 “lang”: <language code>
 }
}

Status (success/
error)

Follows JSON-RPC
2.0 standard.

Response representations

Response code Response message Response body

201 Success {
 “jsonrpc”: “2.0”,
 “id”: “request ID,
 “result”: {
 code: “SUCCESS”,
 message: “User added”
 }
}

201 Error {
 “jsonrpc”: “2.0”,
 “id”: “request ID,
 “error”: {
 code: <numeric code>,
 message: <error message>
 }
}

Error code and message can be one of:
1: No method defined
2: No id (request ID) defined
3: Authentication failed
4: User already exists
5: User does not exist
6: Unknown method …
7: Parameter … not defined

Table 4. PEARL Physical Well-Being Layer, Create User Request and Response

d) Delete existing user (Physical Well-Being Module)

Method POST {websiteroot}/api/json-rpc.php

API definition and request query parameters

Service Name Input Output Info

deleteuser

{
 “id”: request ID,
 “method”: “deleteuser”,

Status (success/
error)

Follows JSON-RPC
2.0 standard.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 29

 “jsonrpc”: “2.0”,
 “params”: {
 “username”: …,
 “securityToken”: <fixed token>,
 }
}

Response representations

Response code Response message Response body

201 Success {
 “jsonrpc”: “2.0”,
 “id”: “request ID,
 “result”: {
 code: “SUCCESS”,
 message: “User deleted”
 }

}

201 Error {
 “jsonrpc”: “2.0”,
 “id”: “request ID,
 “error”: {
 code: <numeric code>,
 message: <error message>
 }
}

See adduser for a list of error codes and messages.

Table 5. PEARL Physical Well-Being Layer, Delete User Request and Response

4.3 Configurations retrieval and deployment

The process of retrieving and deploying the relevant configuration plans varies depending
on whether the user is already registered to the platform or he/she is a new user, being
introduced to the platform services for the first time. As a result some of the components,
such as the DSS, are invoked only when a new registration is taking place. In the current
chapter the major APIs involved in the process of configuration retrieval and deployment
will be described.

4.3.1 Registration

As the transparent account creation over the various application modules was already
described in the previous sections, here we will focus on the DSS-enabled retrieval of a
customized configuration plan upon first login, based on the user profile characteristics.In
order to comply with the requirements of the other PEARL platform modules, the PEARL
DSS was designed and implemented as a RESTful web service. Spring annotation-based
Model-View-Controller (MVC) framework4 was chosen for the process of implementation.
For further details regarding the underlying technologies and implementation logic, please
refer to “D4.4.2 Decision Support System and Rule Engines”.

4 http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 30

PEARL DSS web service is called by the Preference Editor upon the completion of the
User Profile Characteristics by the newly registered user. The userID of the user is sent as
a GET request URL query string parameter. The PEARL DSS web service details are
presented in table 6 below.

Method GET {root}/pearl_bil/rest/retrieveconf/{user_id}

Headers Content-Type application/json

API definition and request query parameters

Service Name Input Output Info

retrieveConfPlanBy
UserId

Integer
user_id

ConfSetEntityResource

res

The output will be a
success/error message/code
and JSON representation of
the configuration plan. user_id
is the ID of the newly created
user profile. res is the REST
representation of the
ConfigurationSettingsEntity
class, created using Spring
HATEOS resource assembler.

Response representations

Response code Response
message

Response body

200 OK {

 "user_id": Integer,

 "tasksSettings": [

 {

 "taskSettingsMap": {

 "taskName": String,

 "soundLevel": String,

 "screenResolution": String,

 "roomLightIntensity": String,

 "deskLightIntensity": String,

 "lightTemperature": String,

 "defaultTask": String,

 "preferredSoftware": String,

 "availabilityIndicator": String,

 "taskWorkspace": Integer

 }

 },

 {

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 31

 "taskSettingsMap": {

 "taskName": String,

 "soundLevel": "low",

 "screenResolution": String,

 "roomLightIntensity": String,

 "deskLightIntensity": String,

 "lightTemperature": String,

 "preferredSoftware": String,

 "availabilityIndicator": String,

 "taskWorkspace": Integer

 }

 },

 {

 "taskSettingsMap": {

 "taskName": String,

 "availabilityIndicator": String,

 "preferredSoftware": String

 }

 }

],

 "links": []

}

404 NOT_FOUND -

Table 6. PEARL DSS REST API definition

4.3.2 Preference Editing

As described in section 3.4 above, the user has the possibility to modify any of the
configuration settings via the Preference editor. Depending on the parameter that has
been changed either the Ambient Tuning Core or the Configurations Manager will be
responsible for the deploying the new settings and therefore will be triggered by the
Preference Editor. If the altered settings concern the ambient environment configurations
or the list of the available tasks, the Ambient Tuning Core will be triggered via the Trigger
Manager. The relevant task switcher and trigger manager APIs are presented in tables 9,
10, 11 and 13, 14, 15 respectively.

If the changes involve any of the other application layer modules, the deployment will be
undertaken by the Configurations Manager. It will be triggered by the preference editor by
sending a REST call, containing the corresponding user_id and the ID of the relevant
application layer module. The configuration manager will then undertake the task of
retrieving the configuration from the database and forwarding them to the module of
interest. The web service that will be used for triggering the Configurations Manager is
described in table 7 below. It should be noted that this service is currently not utilized due
to limitation of the application layer modules.

Method GET
{root}/pearl_bil/rest/setconfigurations/{user_id}/{module_id}

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 32

Headers Content-Type application/json

API definition and request query parameters

Service Name Input Output Info

setModuleConfigurations String
user_id,
String
module_id

Status code The output will be a
success/error message/code.
user_id is the ID of the user.
module_id indicates, which
module is influenced by the
change of the configurations.

Response representations

Response code Response
message

Response body

200 OK

404 NOT_FOUND -

Table 7. PEARL Configurations Manager REST API definition

4.3.3 Task Switcher Manager API

An overview of the Task Switching API API is provided in Table 8 below. The other tables
below describe each operation as a RESTful Web Service.

<<interface>>

TaskSwitcherManagerInterface

taskSwiched(userID:String, taskID:String, workspaceID:String): String

userLogIn(tagID:String, workspaceID:String): String

userWebLogIn (userID:String, workspaceID:String): String

Table 8. List of primitives comprising the Switcher Manager API

Method GET
{root)/taskSwicherManager/taskSwitched/{userId}/{taskId}/{wor

kspaceId}

Headers Content-Type text/plain

API definition and request query parameters

Service Name Input Output Info

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 33

taskSwitched String
userID,
String
taskID,
String
workspace
ID

String This service is used
whenever a new task is
chosen from the User. It
takes as input the User ID,
the chosen Task ID and the
Workspace ID that the User
has made the choice from.
The output will be a
success/error message/code.
The workspaceID is the IP of
the local machine..

Response representations

Response code Response
message

Response body

200 0

404 NOT_FOUND -

Table 9. Switcher Manager Task Switched API definition

Method GET
{root)/taskSwicherManager/userLogIn/{tagId}/{workspaceId}

Headers Content-Type text/plain

API definition and request query parameters

Service Name Input Output Info

userLoggedIn String
tagID,
String
workspace
ID

String This service is used whenever a
User logs in to the system by
using his RFID card. It takes as
input the User’s tag ID, which is
provided from the RFID reader,
and the Workspace ID that the
User has logged in from. The
output will be a success/error
message/code. The workspaceID
is the IP of the local machine

Response representations

Response code Response
message

Response body

200 0

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 34

404 NOT_FOUND -

Table 10. Switcher Manager Tag User Login API definition

Method GET
{root)/taskSwicherManager/userWebLogIn/{userId}/{workspac

eId}

Headers Content-Type text/plain

API definition and request query parameters

Service Name Input Output Info

userWebLogIn String
tagID,
String
workspace
ID

String This service is used
whenever a User logs in to
the system by using the web
interface of the platform. It
takes as input the User ID
and the Workspace ID that
the User has logged in from.
The output will be a
success/error message/code.
The workspaceID is the IP of
the local machine.

Response representations

Response code Response
message

Response body

200 0

404 NOT_FOUND -

Table 11. Switcher Manager Web User Login API definition

4.3.4 Trigger Manager API

The Trigger Manager API is provided in Table 12. The other tables in this section provide
the description of each operation as a RESTFul Web Service.

<<interface>>

TriggerManagerInterface

taskSwiched(userID:String, taskID:String):String

preferenceUpdated(userID:String, taskID:String): String

userLoggedIn(userID:String): String

Table 12. List of primitives comprising the Trigger Manager API

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 35

Method GET {root)/pearl-trigger-
manager/triggerManager/taskSwitched/{userId}/{taskId}

Headers Content-Type text/plain

API definition and request query parameters

Service Name Input Output Info

taskSwiched String
userID,
String
taskID

String This service is used to inform
the PEARL components
whenever a User has
switched a task. It takes as
input the User ID and the
task ID that the User has
switched to. The output will
be a success/error
message/code

Response representations

Response code Response
message

Response body

200 ΟΚ

404 NOT_FOUND -

Table 13. Trigger Manager Task Switched API definition

Method GET {root)/pearl-trigger-manager/triggerManager/
preferenceUpdated/{userId}/{taskId}

Headers Content-Type text/plain

API definition and request query parameters

Service Name Input Output Info

preferenceUpdated String
userID,
String
taskID

String This service is used to inform
the PEARL components
whenever a User has
updated one of the platform
preferences. It takes as input
the User ID and the task ID
that the User is currently
using. The output will be a

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 36

success/error message/code

Response representations

Response code Response
message

Response body

200 ΟΚ

404 NOT_FOUND -

Table 13. Trigger Manager Preference Updated API definition

Method GET {root)/pearl-trigger-manager/triggerManager/
userLoggedIn/{userId}

Headers Content-Type text/plain

API definition and request query parameters

Service Name Input Output Info

userLoggedIn String
userID,
String
taskID

String This service is used to inform
the PEARL components
whenever a User has logged
in to the system. It takes as
input the ID of the user that
has logged in. The output will
be a success/error
message/code

Response representations

Response code Response
message

Response body

200 ΟΚ

404 NOT_FOUND -

Table 14. Trigger Manager User Logged-In API definition

4.3.5 Message Broker API

The MessageBroker API definition is provided in the tables below.

<<subclass>>

CustomStompSessionHandler

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 37

void afterConnected(StompSession session, StompHeaders connectedHeaders)

Table 15. List of public methods exposed in MessageBroker API

Service Name Input Output Info

afterConnected StompSession
session,
StompHeaders
connectedHeaders

void A contract for client
STOMP session
lifecycle events
including a callback
when the session is
established and
notifications of
transport or
message handling
failures. Invoked
when the session is
ready to use.

Table 16. MessageBroker API definition

<<CLASS>>

AbstractWebSocketMessageBrokerConfigurer

–

 void registerStompEndpoints(StompEndpointRegistry registry)

<<CLASS>>

WebController

 void ambientConfigManager(@PathVariable(value = "workspaceid") String workspaceid,
@RequestBody String requestBody)

void workspaceConfigManager(@PathVariable(value = "workspaceid") String
workspaceid, @RequestBody String requestBody)

Table 17. List of public methods exposed in MessageBroker REST API

WebService Name Protocol URL Info

registerStompEndpoints WebSocket ws://pearl-br.euprojects.net/stomp/ The exposable

public endpoint
of the

MessageBroker.

STOMP clients

can subscribe to

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 38

broker via this

endpoint.

ambientConfigManager HTTP
(PUT)

http://pearl-
br.euprojects.net/api/v1/ambient/

The exposable

public endpoint

which SENSAP

webservice

invokes on

ambient

configuration

trigger.

workspaceConfigManager HTTP
(PUT)

http://pearl-
br.euprojects.net/api/v1/workspace/

The exposable

public endpoint

which SENSAP

webservice

invokes on

workspace

configuration

trigger.

Table 18. MessageBroker REST API definition

In addition to the Broker API, in the figure below we also provide the PEARL Message
Broker monitoring UI.

Figure 18. PEARL Message Broker monitoring UI.

4.4 Caledula APIs

The following set of APIs is specific for the Task and Time Management module. In
relation to the development of the digital paper analogue user interface – Calendula (see
D2.3.2 and D3.2.2) – a full set of RESTful web services has been developed to allow full
control over the Task and Time Management module functionalities. Calendula will then
work autonomously and retrieve data from the backend on demand to reduce
management complexity on the backend. The developed web services can be divided into

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 39

two main categories – web services for calendar events management and web services for
tasks management. The details about all of the developed programmable interfaces will be
described in the following sections.

4.4.1 Calendar Management APIs

The Calendar Management APIs include methods for events insertion, update and
deletions, as well as methods for retrieving a list of available users, inviting new users to
existing events, responding to and cancelling invitations.

1) Retrieve all events for a given time period

Method GET {root}/api/events/{owner}/{start_date}/{end_date}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

retrieveEvents {owner} – the userID of the user
of interest

{start_date} – the starting date
of the period of interest

{end_date} - the end date of the
period of interest

Status code,
Object $event

The input is sent as URL
encoded variables.

Response representations

Response code Response
message

Response body

200 OK {

 "eventid":"2ls4lms77l65fae8n3u2d7m7e0",

 "text":"organio rest test 1",

 "start_time":"2016-02-02 11:35:00",

 "end_time":"2016-02-02 12:35:00",

 "participants":"pearl"

}

409 Conflict {

 "status":"ERROR",

 "messages":{ … }

}

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 40

 Table 19. PEARL Task and Time Management Retrieve Calendar Events

2) Add new calendar event

Method POST {root}/api/events

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

addNewEvent {

 "userid": "pearl",

 "start_date": "2016-02-02
11:35",

 "end_date": "2016-02-02
12:35",

 "text": "organio rest test 1",

 “private”: “1” (optional)

}

Status code,

ID of the newly
Created event.

The input is sent in the
body of the request in
JSON format.

Response representations

Response code Response
message

Response body

201 Created {

 "status":"OK",

 "eventid": “…”

}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 20. PEARL Task and Time Management Add New Calendar Event

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 41

3) Update existing event

Method POST {root}/api/changeevent/{eventid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

updateEvent {eventid} – ID of the event that
will be updated

{

 "userid": "pearl",

 "start_date": "2016-02-02
11:35",

 "end_date": "2016-02-02
12:35",

 "text": "organio rest test 1",

 “private”: “1” (optional)

}

Status code The eventid is sent as
URL encoded variables.

The input is sent in the
body of the request in
JSON format.

Response representations

Response code Response
message

Response body

200 Updated { "status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 21. PEARL Task and Time Management Update Calendar Event

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 42

4) Delete existing event

Method POST {root}/api/deleteevent/{userid}/{eventid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

deleteEvent {userid} – the userID of the
owner of the event

{eventid} – the ID of the event
that will be deleted

Status code,
Object $event

The input is sent as URL
encoded variables.

Response representations

Response code Response
message

Response body

200 OK { "status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

422 Unprocessable
Entry

{

 "status":"ERROR",

 "messages":{

“Unsuccessful deletion! Please check your input parameters and try again! If
the problem persists, please contact your PEARL administrator!”

 }

Table 22. PEARL Task and Time Management Delete Calendar Event

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 43

5) Retrieve all registered users

Method GET {root}/api/listofusers

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of the user registered to the PEARL
platform.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

retrieveListOfUsers Status code,
Array $users

Response representations

Response code Response
message

Response body

200 OK {

 "data":{

 "userid":"cska",

 "name":"John Smith"

 },

…

}

Table 23. PEARL Task and Time Management Retrieve All Registered Users

6) Invite a user to an event

Method POST {root} /api/respondtoinvitation/{eventid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 44

the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

inviteUserToEvent {eventid} – ID of the event, for
which the invitation will be sent

{userid} – ID of the user that will
be invitated

Status code The eventid is sent as
URL encoded variables.

Response representations

Response code Response
message

Response body

201 Invited { "status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 24. PEARL Task and Time Management - Invite User to an Existing Calendar Event

7) Respond to invitation

Method POST {root}/api/respondtoinvitation/{eventid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

respondToInvitation {eventid} – ID of the event of
interest

{

Status code The eventid is sent as
URL encoded variable.

The userid and the

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 45

 "userid": "pearl",

 "status": "tentative”

}

status are sent in the
body of the request in
JSON format.

Response representations

Response code Response
message

Response body

201 OK { "status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 25. PEARL Task and Time Management – Respond to Invitation to an Existing Calendar
Event

8) Cancel invitation

Method POST {root} /api/cancelinvitation/{eventid}/{userid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

cancelInvitation {eventid} – ID of the event of
interest

{userid} – ID of the user that will
be removed

Status code The eventid and userid
are sent as URL
encoded variables.

Response representations

Response code Response
message

Response body

201 OK { "status":"OK"}

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 46

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 26. PEARL Task and Time Management – Cancel Invitation to an Existing Calendar Event

4.4.2 Task Management APIs

The Task Management APIs include methods for communication with the PEARL task
management application, including tasks retrieval per user, adding, deleting and
completing tasks.

1) Retrieve list of open tasks

Method GET {root}/api/tasks/{userid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

retrieveEvents {userid} – the userID of the user
of interest Status code,

Object $tasks
The input is sent as URL
encoded variable.

Response representations

Response code Response
message

Response body

200 OK {

 "taskid":"46",

 "task_title":"new test item 1",

 "task_category":"test",

 "task_description":"test 1",

 "priority":"high",

 "due_date":"2016-02-12"

}

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 47

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

 Table 27. PEARL Task and Time Management Retrieve Tasks

2) Add new task

Method POST {root}/api/tasks

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

addNewTask {

 "userid":"pearl", //required

 "task_title":"rest test 1",
//optional

 "task_category":"api",
//optional

 "task_description":"test 1",
//optional

 "priority":"high", //optional

 "due_date":"2016-02-12"
//optional

}

Status code,

ID of the newly
created task.

The input is sent in the
body of the request in
JSON format.

Response representations

Response code Response
message

Response body

201 Created {

 "status":"OK",

 "taskid": “…”

}

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 48

409 Conflict { "status":"ERROR",

 "messages":{ … }

}

Table 28. PEARL Task and Time Management Add New Task

3) Update existing task

Method POST {root}/api/changetask/{taskid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

updateTask {taskid} – ID of the task that will
be updated

{

 "userid":"pearl", //required

 "task_title":"rest test 1",
//optional

 "task_category":"api",
//optional

 "task_description":"test 1",
//optional

 "priority":"high", //optional

 "due_date":"2016-02-12"
//optional

}

Status code The taskid is sent as
URL encoded variables.

The input is sent in the
body of the request in
JSON format.

Response representations

Response code Response
message

Response body

200 Updated { "status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 49

}

Table 29. PEARL Task and Time Management Update Existing Task

4) Complete existing task

Method POST {root}/api/completetask/{taskid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

completeTask {taskid} – ID of the task that will
be completed

Status code The taskid is sent as
URL encoded variables.

Response representations

Response code Response
message

Response body

200 Completed { "status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 30. PEARL Task and Time Management Complete Existing Task

5) Delete Task

Method POST {root}/api/deletetask/{taskid}

Headers

Content-Type application/json

Time Unix timestamp used to generate the HMAC
hash, expires after 10 min.

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 50

User Username of a registered PEARL user.

Hash SHA256 hash generated by the combination of
the current time stamp, the username and the
secret password.

API definition and request query parameters

Service Name Input Output Info

deleteTask {taskid} – ID of the task that will
be deleted

Status code The taskid is sent as
URL encoded variables.

Response representations

Response code Response
message

Response body

200 OK { "status":"OK"}

409 Conflict {

 "status":"ERROR",

 "messages":{

 …

 }

}

Table 31. PEARL Task and Time Management Delete Existing Task

5 Summary and Conclusions

The distributed nature of the PEARL application layer modules has posed a number of
challenges in terms of reliable and secure exchange of configuration and application data,
fluent and uninterrupted user access to the variety of PEARL services and provision of
customized user experience. In order to address the aforementioned challenges and to
enable seamless inclusion of additional application layer in the future we have developed
a set of configuration management tools and programmable interfaces, such as
transparent cross-platform account creation and user registration, single sign-on cross
authentication, DSS for automated configuration plan customization, message broker
application for automated and robust mapping of mismatching parameters at the local
client agents, reliable interfaces and mechanisms for configuration retrieval and
deployment and secure application data transfer. The current document described the
major configurations management capabilities of the platform by presenting the relevant
functionalities of the underlying platform components in the context of four major
scenarios, thus aiming to fully illustrate the adaptability of the holistic PEARL platform. To
further elaborate on the configurations management process, we presented the major data
flows related to each of the scenarios and we have offered detailed description of the
programmable interfaces, developed for inter-module data exchange. The purpose of this
deliverable is to serve as a summary of the implemented programmable interfaces and

D-4.3.2 Programmable Interfaces and Configuration Management Tools

Public

PEARL 51

configuration management tools, which will enable the future development of extended
functionalities and will facilitate the inclusion of third-party application layer modules.

