

 AAL Joint Programme

REVOLUTION

AAL-2013-6-129

 REVOLUTION i

Project Identification

Project Number AAL-2013-6-129

Duration 24 months

Coordinator Thomas Kamps

Coordinator Organization YouPers AG

Website www.youpers.com

Solution Design

Document Identification

Deliverable ID D2.5 Solution Design

Release number/date V2.0 2015-07-17

Checked and released by Reto Blunschi

Key Information from “Description of Work”

Deliverable Description The Solution Design document builds the basis for all research and
development work of the project. It documents the system and software
architecture to be used for this solution.

Each component will be integrated into the overall system architecture.

• The consortium will decide on which types of smartphone will be
supported

• The characteristic for the platform will be specified

• Collaboration: Definition for the cooperation of the community

Level RE = Restricted

Deliverable Type D = Document

Original due date 2015-03-31

Authorship & Information

Editor Reto Blunschi, YP

Partners contributing YP, XIM, HSLU

Reviewed by XIM, HSLU

D2.5 Solution Design

 REVOLUTION ii

Release History

Release
Number

Date Author(s) Release description /changes made

V 0.0 2014-05-31 Reto Blunschi, YPS Basic Document structure

V 0.1 2014-07-02 Reto Blunschi, YPS Adapted after scope definition and solution
design workshop in Leuven

V0.2 2015-01-18 Paul Schmieder, HSLU Technical Amendments and corrections,
description of the internal structure of the
App.

V 0.9 2015-04-12 Paul Schmieder, HSLU Client documentation

V 1.0 2015-05-31 Reto Blunschi, YPS Finalizations

V1.01 2015-06-08 Laurenece Pearce, XIM Review comments

V1.02 2015-06-10 Reto Blunschi, YPS Updates after Iteration 1 und 2

V1.03 2015-05-15 Laurence Peace, XIM Updates and English language corrections

V1.04

V1.05

V1.06 2015-07-08 Paul Schmieder, HSLU Updates section 6.3

V1.07 2015-05-14 Reto Blunschi, YPS General review and updates

V1.08 2015-07-16 Clemens Nieke, HSLU Overall review

V2.0 2015-7-17 Reto Blunschi, YPS Finalizations and Release

REVOLUTION Partners

REVOLUTION (2013-06-129) is a project within the AAL Joint Programme Call 5.

The consortium members are:

Partner 1: YouPers (YP), project coordinator

Contact person: Thomas Kamps

e-mail: thomas.kamps@youpers.com

Partner 2: Lucerne University of Applied Science and Arts – CEESAR iHomeLab (HSLU)

Contact person: Clemens Nieke

e-mail: clemens.nieke@hslu.ch

D2.5 Solution Design

 REVOLUTION iii

Partner 3: terzStiftung TERZ)

Contact person: Sabine Kaiser

e-mail: sabine.kaiser@terzstiftung.ch

Partner 4: XIM (XIM)

Contact person: Laurence Pearce

e-mail: laurence.pearce@xim.co.uk

Partner 5: Creagy (CRE)

Contact person: Reto Blunschi

e-mail:

reto.blunschi@youpers.com

Partner 6: ANA ASLAN INTERNATIONAL Foundation (AAIF, with voluntary contribution)

Contact person: Prof. Dr. Luiza Spiru

e-mail: lsaslan@brainaging.ro

Table of Contents

Release History II	
REVOLUTION Partners II	
Table of Contents III	
Abbreviations IV	
1	 Introduction 1	

1.1	 Background 1	
1.2	 Purpose of the Solution Design 1	
1.3	 Referenced Documents 1	

2	 Principles and guidelines 2	
3	 System Architecture 3	

3.1	 Overview 3	
3.2	 System Hardware Architecture 3	

3.2.1	 Client Hardware 4	
3.2.2	 Backend 4	

3.3	 System Software Architecture 5	
3.3.1	 Backend Server 5	
3.3.2	 Client 7	

3.4	 Communication Architecture 8	
3.4.1	 Main Backend to Smart Phone client communication 9	
3.4.2	 Additional Communication Channels: Email 9	
3.4.3	 Additional Communication Channels: Push Notification 9	

D2.5 Solution Design

 REVOLUTION iv

3.4.4	 Communication with 3rd party providers 10	
3.5	 Authentication and Authorization 10	

4	 Data and API Design 11	
4.1	 Conceptual bases 11	
4.2	 Data Model 12	
4.3	 API Design 13	

5	 Human Machine Interface 14	
5.1	 Screen Map 15	
5.2	 Wireframe screens 15	

6	 Detailed Component Design 15	
6.1	 Component Breakdown and organization 15	
6.2	 Backend and Database 16	

6.2.1	 Backend Application Server 16	
6.2.2	 Database 17	
6.2.3	 Activity Recognition and Prediction 18	

6.3	 Structure of the Client App 21	
6.3.1	 General Architecture 21	
6.3.2	 Internal App Structure 21	
6.3.3	 App Features 23	
6.3.4	 Special App Features: Google Maps integration 23	
6.3.5	 Special App Features: Seamless communication integration 24	
6.3.6	 Special App Features: Internal direct Communication Channel 25	
6.3.7	 Special App Features: Speech recognition 25	

6.4	 Web Frontend 25	
6.4.1	 Architecture of the web app components 26	

7	 External Interfaces 26	
8	 System Integrity Controls 26	

Abbreviations

Abbrev. Description

AAL Ambient Assisted Living

AAL JP Ambient Assisted Living Joint Programme

HEATLHY@WORK Acronym of this Project

D2.5 Solution Design

 REVOLUTION 1

1 Introduction

1.1 Background

This solution design document is intended for the research and development project
REVOLUTION. The project is financed by the European Union (EU), through the AAL Joint
Program, and by national authorities in the respective countries represented in the consortium
(National Contact Points).

It is the goal of REVOLUTION to address the fields of voluntary, unpaid occupation of people in
the post-employment phase. The idea of REVOLUTION is based on a new, very flexible way to
plan and support help services brought by these older adults on a voluntary basis. Both the
volunteers and the assisted persons (people of all age), will sustain and/or increase their
participation in social life with positive effects on personal satisfaction, demographic ageing and
overall healthcare costs.

It is the aim of our international team to develop an innovative solution to keep the sprightly
pensioners healthy and help them to enjoy their life.

1.2 Purpose of the Solution Design

The solution design has the goal to define system and software design decisions to enable
different partners and teams of the REVOLUTION consortium to work in parallel on multiple
components. The Solution Design document details the system architecture by defining the
different components and their interaction.

Thus, it ensures that the non-functional system requirements will be met by our system.

The level of detail of this document to be achieved is a compromise between a traditional waterfall
approach, that defines everything upfront and a modern, iterative, test-driven approach.
REVOLUTION has a project plan that defines 4 iterations – so we expect this Solution Design
document at least to be updated before the start of each iteration.

1.3 Referenced Documents

D2.1 End User Requirements

D2.2 Report on ethical issues

D2.3 Usability concept and prototype (Wireframes and Screen Map)

D2.4 Data Security and Privacy concept

D2.5 Solution Design

 REVOLUTION 2

2 Principles and guidelines

The technical design of REVOLUTION follows a set of principles, which are the base criteria for
the design choices the consortium has to make during the project.

Data security and encryption are fundamental
The safety of the data of the REVOLUTION users is a fundamental design goal of REVOLUTION.
Protecting sensitive data is the end goal of almost all IT security measures. Two strong arguments
for protecting sensitive data are to avoid identity theft and to protect privacy.

Therefore authentication, authorization and encryption are fundamental components of the
REVOLUTION system architecture.

Privacy is Priority
The evolution of Web technologies has increased collection, processing and publication of
personal data. Privacy concerns are raised more often as applications built on the Web platform
have access to more sensitive data — including location, health and social network information —
and users' activity on the Web is ubiquitously tracked.

The privacy of REVOLUTION’s users is therefore a paramount concern. REVOLUTION will not
use any of the user's personal data for anything outside the core REVOLUTION system use cases
– no advertising and no selling of statistical data. The solution design will make sure that every
user has only access to his own data and shares only the minimum information needed with other
users to enable communication and interaction inside REVOLUTION. Other user related
information is kept and stored securely on the backend, a user's device will only ever receive the
data of the currently logged in user and his interactions with selected other users.

The system architecture needs to ensure that a single end-user device or a single end-user will
never have access to the full data of REVOLUTION.

Reuse before make
The REVOLUTION technology work group is driven by a goal to efficiently provide value to our
business partners and end user organizations. Whenever possible we will evaluate and use
existing software, modules and components before we consider writing new software. In today's
internet and cloud driven ecosystems a very large amount of software components and services is
available, either as Open Source or as commercial components.

The REVOLUTION consortium will employ those existing components whenever they fulfil our
needs and their quality is acceptable.

Open Source first
Open-source software (OSS) is computer software with its source code made available with a
license in which the copyright holder provides the rights to study, change and distribute the
software to anyone and for any purpose. Open-source software is often developed in a public,
collaborative manner.

Today's global software development environment especially in the area of Internet and cloud-
based systems relies heavily on open source software. To be able to deliver applications and
systems within reasonable timeframes it is taken for granted that many of the major base
components needed to build these systems are not written over and over again but taken from the
huge amount of available open source components.

D2.5 Solution Design

 REVOLUTION 3

These are the principles of REVOLUTION’s solution design. If there is a required feature that is not
available as Open Source and cannot be adjusted thereof, a special custom component is built or
a closed-source commercial component will be acquired and integrated.

The REVOLUTION development team also contributes to open source projects in form of all
adaptations, improvements or bug fixes made during the project in existing open source
components.

3 System Architecture

3.1 Overview

The basic system architecture of the envisioned full-scale REVOLUTION system is similar to any
of today's modern Internet based applications. It contains the following main system components:
a web based client software and several native mobile client applications that all communicate with
a central backend infrastructure. The latter keeps the master data and allows all client applications
to stay in sync and communicate with each other.

The Backend component is able to communicate not only with the client applications that are part
of the REVOLUTION system, but also offers the possibility for other services to integrate with the
REVOLUTION platform. Thereby third party systems either act as providers of information like a
provider for Activity Tracking information (e.g. your fitbit data), or as a consumer of REVOLUTION
data, e.g. a personal calendar on "Google Calendar" or "Microsoft online Calender" displaying
REVOLUTION tasks.

RESTFul Services, oAuth 2.0, HTTPS and other contemporary integration mechanisms make this
integration of services possible in a secure way.

3.2 System Hardware Architecture

The system hardware architecture is based on current best practices of today's internet based
application architectures. There is no hardware development planned as part of the REVOLUTION
project.

D2.5 Solution Design

 REVOLUTION 4

3.2.1 Client Hardware

REVOLUTION will use client mobile and tablet devices that exist on the consumer market today.
As part of the project planning the consortium has decided to first focus on Smartphone sized
devices of the two main ecosystems Android and iOS.

The evaluation of which ecosystem should be prioritized has given no clear preference.
Distribution between Android and iOS is currently close to even in the consortium's target markets.
Also the end-user organizations that will do trials have no clear preference. The result of this
evaluation even shows that to be able to execute real trials with the user's personal devices, we
need to support both ecosystems right from the beginning.

So the consortium has decided to set the requirements for supported devices to:

- iOS and Android ecosystems

- smartphone-sized devices

- reasonably modern devices (iOS 6+, Android 4+)

This decision may be adjusted after the second development iteration. Eventually, in a planned
dissemination phase, all common client architectures will be supported:

- Browser-based large-screen notebooks/computers

- Tablet sized devices

- Other phone ecosystems like Windows Phone

The technology work group of the AAL consortium, after careful consideration of the requirements,
has decided to base the client side development on the so-called "hybrid approach" using
technologies like phone-gap/cordova and the ionic-framework. For more information about this
decision and the experience made with this decision see chapter 6.3

In iteration 3 and 4, where activity tracking is part of the requirements it may be decided to include
other client-hardware to support activity tracking. The consortium will rely also for these
requirements on existing sensors that are available on the mobile devices and develop software-
based integration to those sensors.

There is no custom client hardware development planned in this AAL project.

3.2.2 Backend

The backend of REVOLUTION builds on and extends the existing Youpers Health platform
backend.

The backend platform of the Youpers Health platform uses virtualized server machines running in
multiple data centers located in Switzerland under the jurisdiction of a Switzerland based company.
All virtual machines required for development, testing and production environments are rented
from this Swiss based IAAS (Infrastructure as a Service) provider.

The IAAS provider provides a guaranteed, scalable service of running the virtual machines that
make up the Youpers Platform:

• Database Servers

• Backend Application servers

• Load Balancing servers

• Static Assets servers

• De/Encryption servers

• Management and Monitoring Servers

D2.5 Solution Design

 REVOLUTION 5

All these services are running on identical Debian Linux based virtual machines. There is no
custom hardware development planned as part of the REVOLUTION project. All needed backend
hardware resources will be rented from Swiss-based IAAS providers.

The backend infrastructure will be provided and managed by the consortium partner Youpers.

3.3 System Software Architecture

It is the aim of the REVOLUTION consortium to limit the development of custom software to the
parts of the system where the real innovation and value of the REVOLUTION project are. For any
other components we are employing proven open source solutions wherever feasible.

This strategy is the base for many of the architectural decisions documented in this Solution
Design. As an example for this, one may consider the use of the node.js platform for the backend
software stack. The node.js platform offers an amazing wealth of high quality modules that can be
easily integrated with the npm package management environment. The strategy of using existing
software components when possible allows us to focus development on the business value as it
limits the amount of boilerplate code to be written to an absolute minimum.

In the following the main software components used as part of the REVOLUTION backend system
are listed and described.

3.3.1 Backend Server

The REVOLUTION backend software is based on the following main components:

• Multiple Linux Debian VMs managed by ansible (see https://github.com/ansible/ansible)

o Openvpn based internal encrypted network

o SSH based management over encrypted communication

o Iptables based firewalling

• MongoDb Database

• Node.js javascript based Backend with the following main npm modules:

o Restify RESTful server

o mongoose: ORM mapper

o node-Mailer, Email-templates: email sending

o passport: oAuth Client Side

o iCalender: Office Calendar integration

o moment.js Date/Time/Timezone manipulation

o async management of async execution

o lodash javascript tooling

o graphicsmagix image manipulation

o socket.io socket communication

o apn, node-gcm mobile push notifications

All these components are open source and can be found on github.com.

• Youpers Platform backend library (closed source, owned by Youpers)

o Provides functionality that is common for multiple projects in the YouPers
ecosystem like user management, profile management, authentication,
authorization, mobile push support, test management

D2.5 Solution Design

 REVOLUTION 6

• nginx static Webserver and loadbalancer

Custom Platform Components developed on the node.js platform specifically for the REVOLUTION
service:

• User Location Management:
Maintain the user's home location together with his other "usual locations" in a secure and
private server-side storage in order to support the "Smart Matching algorithm".

• Help Request Management:
Lifecycle Management of all help requests – moves help requests through the state engine
defined in the backend: OPEN -> SETTLED -> RATED -> DONE (DELETED – EXPIRED)

• Application Management:
Manages multiple applications for a single help requests – moves the applications through
the application state engine: APPLIED -> ACCEPTED -> RATED (DENIED – EXPIRED –
DELETED)

• User Rating/Feedback Component:
Allows one user to rate another user based on the execution of a help request in several
dimensions. After careful evaluation of different approaches to rating, the consortium
decided to use a simple 3 value scale similar to the one used by popular services like eBay
or ricardo.ch. This component also provides a summarized anonymous view upon a user's
part ratings to be displayed as part of his public profile.

• Smart Matching Component:
Matches a potential volunteer to an open help request in real-time. Based on different input
events and stored data the smart matching component notifies the "best matching

D2.5 Solution Design

 REVOLUTION 7

volunteers" at the best possible time about a help request they might be able to fulfil now or
in near future. See Chapter 6.2.3 for more information.

New general component designed and developed in the REVOLUTION project, destined to
become a Youpers Platform component, that will also benefit other projects.

• Notification Management:
The REVOLUTION service relies heavily on realtime notifications to possible volunteers
and help requesters. The main communication channel used is "Push Notifications" on the
mobile phone. While the Youpers Platform already had the functionality to send push
notifications to all supported platforms before this project, REVOLUTION required us to go
a step further. A component to maintain open notifications (unread/read/dismissed/expired)
and display a suitable inbox / alert list to the user was needed. Also a more fine granular
way to adjust profile settings about which notifications a user wants on which channel how
often was added to this component.

Integration of this component into the smart phone app is part of development iteration 3.

3.3.2 Client

As documented in Chapter 3.2.1 the consortium has decided to focus client prototype development
on smartphone sized devices from both popular ecosystems – Android and iOS. Additionally,
management interfaces for system and content-administrators will be developed for the large
screen browser platform.

The technology work group of the Consortium has carefully considered the non-functional
requirements and evaluated different software architectures for the client software:

- Browser-only client using the framework jQuery Mobile

- Hybrid technology mobile app clients using the PhoneGap/Cordova stack with the ionic
framework: http://ionicframework.com/

- Native apps using the native software stack for each ecosystem

• Java-based Android app

• Objective-C or Swift-based app for the iOS ecosystem

Based on the evaluation document (ClientTechnolgy_Evaluation_V100.pdf), that summarized the
advantages and issues of each option the technology work group of the consortium decided to go
with the hybrid technology approach and the ionic framework for this project's client software
architecture.

A short overview of the hybrid architecture together with the ionic framework can be seen in the
following picture:

D2.5 Solution Design

 REVOLUTION 8

The Ionic framework, at its core, consist of four parts:

• A stylesheet that defines a mobile optimized base layout. This layout serves as the
foundation for an app. It includes many best practices that the developer does not need to
think about anymore.

• The AngularJS module defines the directives (custom elements), navigation patterns and
best practices to simplify development.

• Ionic’s developers have a background in developer tooling and is evident in their command
line tool. The CLI allows a quick start and can act as a proxy to the Cordova and Gulp CLI.

• The last component is a keyboard plugin. Though technically not required, the plugin
provides more information about the current state of the app.

A more detailed description of the client software design can be found in chapter 5 and chapter 6.

3.4 Communication Architecture

Communication between clients and backend follows best practices of current Internet based
systems. The main defining concepts for the communication architecture are:

• All communication over public networks is securely encrypted by using TCP/IP with
HTTPS/TLS

• Authentication and Authorization with standard protocols (oAuth 2.0)

• Stateless, RESTFul Backend API

D2.5 Solution Design

 REVOLUTION 9

• JSON data representation

• Notifications of new important events/invitations/messages are transmitted using:

o Standard Email infrastructure

o Mobile Push notification (Google Cloud Messaging on Android, Apple Push
Notification service –APN on iOS devices)

Communication between mobile clients and the backend is further simplified by the provided
Youpers SDKs for Angular JS, Android and iOS respectively. Each SDK is a library that defines the
backend’s vocabulary making it easy for programmers to develop client applications.

3.4.1 Main Backend to Smart Phone client communication

The main communication channel between the client applications and the backend is the
communication of the HTML5/Javascript/AngularJS/Ionic app running in the SmartPhone and the
RESTful API provided by the backend Server.

This communication is using the AngularJS service architecture and employs the Restangular
Framework (https://github.com/mgonto/restangular) to further reduce the needed boilerplate code
to be written.

All communication is done using asynchronous Javascript calls (so called AJAX calls) over
TLS/SSL encrypted HTTP with perfect forward secrecy – currently the most secure way of
encryption for this type of communication that is also used by today's banking internet solutions.

REVOLUTION follows the Best Practice by the angular.js and Restangular frameworks Using
these separate components allows splitting responsibilities between partners of the REVOLUTION
consortium. For example, the consortium partner developing the user interface (UI) development
may use mock services to communicate with the backend while another partner develops the
actual services simultaneously.

3.4.2 Additional Communication Channels: Email

The Youpers platform uses email as a channel to notify users of certain events while they are
offline. Thus, if configured accordingly, a user gets email notifications about new invitations, new
recommendations or new messages. Email notifications contain a link to the new information
typically viewed in browser.

The communication channel email is the default for users that mainly use a web interface. So, for
REVOLUTION this is of minor importance only.

3.4.3 Additional Communication Channels: Push Notification

The Youpers platform uses mobile push notifications as a channel to notify users of certain events
that happen in the system while they are offline or also to notify a user of other users interaction
while they are online. Depending on the configuration and his personal profile settings a user may
receive push notifications about new help requests and accepted requests.

The communication channel 'Push Notification' is default for users that mainly use a mobile device
to interact with the Youpers platform. Thus, for REVOLUTION this is the dominant communication
channel.

D2.5 Solution Design

 REVOLUTION 10

The currently supported push notification types for REVOLUTION are:

Technical - ID Name Description

newApplication Application to your Help Request new application has arrived

applicationAccepted Your Application was accepted Volunteer is informed, that his application is chosen

urgentHelpRequest New urgent help request Volunteers closeby with the appropriate setting

newHelpRequest New matching help request Volunteers closeby with the appropriate setting

pendingRating pending Rating Invitation to rate

Those messages are detailed in: REV_ Push Messages Overview.pdf

3.4.4 Communication with 3rd party providers

Communication with 3rd party providers is required to integrate Service Providers like food
providers, (semi-)professional volunteering providers or other sites that publish help requests.

According to the overall architecture, communication with 3rd party providers is done via the
backend. The backend will combine several sources of information and offer them via a unified API
to the clients.

The REVOLUTION prototype as of end of Iteration 2 does not yet include any 3rd party provider
integration. As soon as we progress to further iteration more information will be added to this
chapter.

Authentication and authorization with 3rd party APIs follows the requirements of each content
provider, usually oAuth2 over HTTPS.

3.5 Authentication and Authorization

All communication between client and the backend as well as communication between the
backend and 3rd party providers is done over encrypted, authenticated and authorized channels.

The details of security, data protection measures, authentication and authorization are
documented in "D2.4 Data Security and Privacy"- In this chapter only the aspects of immediate
relevance to client and backend developers are documented.

Hybrid

Client

Backend:

- Forwards query

- Returns consolidated results
containing URLs to static

content

3rd party
Provider 2

3rd party
Provider 1

Other
Clients Other

Clients

1 GET api/help?filter:urgent
2 GET req?query:urgent

2 GET api/v2/anfragen?where:urgent

4 Access static content (pictures,. ..)

3 return consolidated results

D2.5 Solution Design

 REVOLUTION 11

The Youpers platform supports current best practices being used for todays cloud based Internet
applications. There is a local Youpers authentication and authorization provider, but the backend
API also supports "social authentications", e.g. "log in with your Google account" or "log in with
your Facebook account.

At the beginning of a session a client may authenticate via any of these channels. After the
successful authentication the client receives an encrypted token. For all further requests the client
needs to include this access token (a Bearer token) in the request. The token may expire or be
invalidated after a predetermined time, after which the client has to re-authenticate to receive a
new access token.

In production systems the authentication with access token / bearer token is the only supported
form of authentication for backend API calls. The only backend call accepting other means of
authentication is the "exchangeAuthForToken" call. In test systems / prototyping a client may also
use HTTP Basic auth over SSL (meaning encrypted username/password) for each backend
request cutting out the need for a token exchange before doing any requests.

Type of environment Authentication means / flow

Production 1. Authenticate to platform using oAuth with:

- Youpers Identification Provider

- Social Logins (TBD for REVOLUTION: supported Social Identity
providers)

2. Exchange Auth grant for Youpers access token

https: POST /api/login returns user object and Youpers
Accesstoken in body).
(include the credentials you got from the Auth provider in step 1 in
your request)

3. Authenticate further Backend Rest calls using the Bearer Token

- add: HTTP Header "Authorization: Bearer 34345nk3j4n5"

Test / Prototype Use production version or:

- authenticate every call with HTTP Basic Auth.

4 Data and API Design

4.1 Conceptual bases

A fundamental solution design element of the REVOLUTION system is the data model of the
backend API. This backend API will be used by all client devices – be it a smartphone app, a
tablet, a web browser or a TV – so this is the common denominator of the system. It defines the
language that is used to communicate on a technical level and also the language used by
developers in different teams to communicate which each other.

D2.5 Solution Design

 REVOLUTION 12

The actual storage model - the physical data structure on the database server - is encapsulated in
the backend server and therefore unknown to the application clients. It may be similar to the model
defined in chapter 4.2, e.g. when using a database engine that support JSON as a data structure,
or it may significantly differ, for example when using a relational database based structure.

This allows the backend implementation to change the physical data structure without affecting
clients, as along as the API contract remains stable.

4.2 Data Model

A first version of the REVOLUTION API data model has been developed and needs to be further
discussed and extended for iteration 3 and 4. The model shown below is based on the Youpers
platform and extends the existing platform API data model with product/project specific
components.

D2.5 Solution Design

 REVOLUTION 13

This image only serves as a preview for the online version here:

https://drive.draw.io/#G0B95w28y1cwlsRlZ3d0dhN3QyRFk

you need to login with your REVOLUTION google account that has access to our Google Drive.

4.3 API Design

The Youpers platform uses a standard RestFul API Design, allowing standard CRUD operations
using the standard HTTP verbs:

D2.5 Solution Design

 REVOLUTION 14

Operation HTTP Verb Examples
Create POST POST /api/missions

with body content as json {}

Read GET GET /api/missions/324324ab34cd

GET /api/missions?filter[name]="bla"&sort="id"&limit=10

Update PUT PUT /api/missions/324324ab34cd

with full body content as json {}

Delete DELETE DELETE /api/missions/324324ab34cd

The API is documented by the formal language specified in the Swagger spec
(https://github.com/wordnik/swagger-spec). An interactive documentation of the spec is generated
and published in the same format as this example
(http://petstore.swagger.wordnik.com/#!/pet/addPet).

The API supports the following standard query parameters:

• Sort, limit, skip: May be used to implement a pagination like behaviour.

o limit: limits the number of objects to be returned

o skip: skip the first N objects that would be returned

o Sort: sort the objects by a property

• Filter: Flexible search / filtering options

o filter[property]=abc

• Populate: delivers a full object instead of a reference for properties who reference another
object:

o Populate='author' will deliver the full user object in the author property instead of
just the id.

The REVOLUTION backend API is documented online at: https://rev-ci.youpers.com/

5 Human Machine Interface

In the REVOLUTION scoping workshop it was decided that the prime user interface (UI) for
REVOLUTION will be a Smartphone-sized device. For the first two iterations the project therefore
focuses only on these device types which usually have a screen diameter between 4 and 6 inches.
It is open whether other sizes/platforms/ecosystems will be supported in later phases of the
project.

The user interface has been designed and documented with two artefacts, a screen map and set
of wireframes.

D2.5 Solution Design

 REVOLUTION 15

5.1 Screen Map

The REVOLUTION screen map shows an overview of all iteration 1 screens and shows the main
navigation paths.

This image just serves as a preview, please consult the original screenmap

5.2 Wireframe screens

The detailed screen designs can be found online at http://www.xim.ai/revolution/home.html

6 Detailed Component Design

6.1 Component Breakdown and organization

The following graphic shows how the development team has split up the responsibilities and
components during the first iteration of REVOLUTION development.

D2.5 Solution Design

 REVOLUTION 16

6.2 Backend and Database

6.2.1 Backend Application Server

The Youpers Application Server platform bases on the modern node.js technology stack. Node.js
allows the creation of web servers and networking tools, using JavaScript and a collection of
"modules" that handle various core functionality concerns. Modules handle File system I/O,
Networking (HTTP, TCP, UDP, DNS, or TLS/SSL), Binary data (buffers), Cryptography functions,
Data streams, and other core functions. Node's modules have a simple and elegant API, reducing
the complexity of writing server applications.

Frameworks can be used to accelerate the development of applications, and common frameworks
are Express.js, Socket.io and Connect. Node.js is primarily used to build network programs such
as web servers, making it similar to PHP and Python. The biggest difference between PHP and
Node.js is that PHP is a blocking language (commands execute only after the previous command
has completed), while Node.js is a non-blocking language (commands execute in parallel, and use
callbacks to signal completion).

Node.js brings event-driven programming to web servers, enabling development of fast web
servers in JavaScript. Developers can create highly scalable servers without using threading, by
using a simplified model of event-driven programming that uses callbacks to signal the completion
of a task. Node.js was created because concurrency is difficult in many server-side programming

D2.5 Solution Design

 REVOLUTION 17

languages, and often leads to poor performance. Node.js connects the ease of a scripting
language (JavaScript) with the power of Unix network programming.

Thousands of open-source libraries have been built for Node.js, and can be downloaded for free
from the npm website. Node.js has a developer community centered around two mailing lists and
the IRC channel #node.js on freenode. The community gathers at NodeConf, an annual developer
conference focused on Node.js.

The REVOLUTON consortium's experiences with the node.js platform have been extraordinarily
positive. The ability to reuse

6.2.2 Database

The Youpers Platform is built upon modern best practices for real-time web applications. It uses a
NoSQL database. A NoSQL (often interpreted as Not only SQL) database provides a mechanism
for storage and retrieval of data that is modeled in means other than the tabular relations used in
relational databases. Motivations for this approach include simplicity of design, horizontal scaling,
and finer control over availability. The data structures used by NoSQL databases (e.g. key-value,
graph, or document) differ from those used in relational databases, making some operations faster
in NoSQL and others faster in relational databases.

Youpers has chosen to use the Open Source Product "MongoDB" as its database layer
(https://www.mongodb.org/). Main reason for this choice was development efficiency and the very
good integration into the main backend technology stack based on node.js. The mature ODM
(Object-Database-Mapping) node.js Module mongoose (http://mongoosejs.com/) makes accessing
the Database from the application server code simple and efficient.

For the prototype development in this AAL project a single mongodb instance is providing sufficient
availability and performance and we can get a large benefit in development efficiency. Typical data
size to be managed in a AAL prototype trial is a few Megabytes. Any database product can handle
this efficiently as all data easily fits into fast memory.

But MongoDb also allows scaling if a dissemination of this project will require it. It is easily possible
to scale using data sharding and replicasets as shown in the picture below.

MongoDB has proven its performance in production with thousands of deployments also with Big
Data applications.

D2.5 Solution Design

 REVOLUTION 18

6.2.3 Activity Recognition and Prediction

An important part of the REVOLUTION project is the smart matching between a help
requester and a potential volunteer. Making REVOLUTION smarter is the main objective of
development iterations 3 and 4. To make REVOLUTION appear smarter the system needs
to recognize the current activity a user is performing or even predict future activities a user
might be planning to do and apply this knowledge to his potential interactions within
REVOLUTION

The business process and requirement analysis conducted during iteration 1 and 2 has
given us the following requirement areas where activity recognition will play its role:

1. Realtime smart matching of a help request to a volunteer
Goal: Suggest the right open help request to the most likely available and willing
volunteer at the best possible time to increase the probability of an acceptance by
the volunteer without spamming a huge number of uninterested volunteers.

2. Automatically suggest adding new help requests
Goal: Simplify the addition of a new help request for a help requester and increase
the number of available help requests by triggering the adding of new requests.
Recognize patters in the way help requesters request help to automatically suggest
adding a new help request with prefilled default values.

D2.5 Solution Design

 REVOLUTION 19

3. Recognize when a volunteer actually performs a request
Goal: recognize when a volunteer, that previously accepted a help request actually
meets this help requester at the place of the requested help. With this knowledge
REVOLUTION recognizes that the help request has most probably been fulfilled
and it can trigger a message to request a rating of both, the volunteer and the help
requester.

For solutions to all these requirements REVOLUTION needs to access personal user data
- the most important elements of user data to recognize activities are – in order of
importance:

• Geolocation Tracking and Geofencing:
REVOLUTION can react a lot more adaptive if it knows a user's position and can
relate this location to existing or new help requests or other users. New Geofencing
APIs greatly simplify these interactions.

• Past REVOLUTION transactions:
Revolution can recognize patters in the user's interactions with REVOLUTION and
adapt its behaviour to meet these patters.

• Calendar information:
REVOLUTION can react a lot more adaptive if it has access to a user's calendar
information, since it can see whether a user is busy or can see scheduled future
appointments including their location.

Requirement Analysis and the following Solution Design process has shown that with
these data clusters we can achieve the desired goals. There is little additional value for the
REVOLUTION service in trying to detect what exactly a user is or might be doing (as in
"Shopping") as long as we know where he is, where might want to go, what his
preferences are and his personal agenda.

6.2.3.1 Realtime smart matching of a help request to a volunteer

There are three possible triggers that are to be considered for a realtime match of a help
request to a potential volunteer:

• A new urgent help request is being entered in into the system. Then REVOLUTION
needs to find and notify the most likely available and willing volunteers.
REVOLUTION will notify a configured number of potential volunteers. The concrete
number is a compromise between actually finding an accepting volunteer and not
wanting to spam a large number of potential volunteer because at the end only one
of them will be able to execute the request – first come, first serves.
Whether a specific user is notified or not depends on:

o distance between request and last known user location
o the preferences of this user (categories)
o the availability based on the user's calendar
o the user's past interactions within REVOLUTION. (example: users who have

already performed help requests for the same requester are preferred)

D2.5 Solution Design

 REVOLUTION 20

• A potential volunteer is moving (walking, driving, …) and passes the location of a
open urgent help request within a specified radius. Whenever a potential volunteer
is leaving home, REVOLUTION starts watching and notifies the user if he passes
the location of a current, open and urgent help request nearby. This is made
possible by geofencing APIs.
REVOUTION sets up a fence around the user's home location to be notified when a
user leaves his home and starts moving. Upon this event it will download the set of
close by open urgent requests and setup new geofences for each of them to be
notified when the user passes by closely. A larger geofence is used to be notified
when the user leaves the area within the requests have been loaded already, so it
can update the list of geofenced requests – remove the ones that are too far away
now and add new ones.

• When a number of volunteers (all that were notified?) have ignored or denied an
urgent help request notification so that there are no more options available,
REVOLUTION needs to find more potential volunteers and notify them as well. It
will apply the same algorithm as specified above, excluding users that have already
gotten the same notification.

6.2.3.2 Automatically suggest adding new help requests

This functionality relies mostly on analysis of past help requests of the same user and tries
to find patterns in them to suggest adding similar help requests. The exact algorithms to be
used are subject of the analysis work planned in Iteration 3.

6.2.3.3 Help request execution recognition

This functionality relies on the available geofencing APIs on both primary platforms
Android and iOS. These APIs allow an app to setup automatic triggers to be notified
whenever a device enters a specific area – typically a circular area with a specific radius
around a specific centre point. To fulfil the requirements REVOLUTION sets up a specific
geofence with a small radius around the location of this help request on the volunteer's
device whenever a volunteer is accepted to perform a help request. Now the device will
notify the app whenever it is entering that fence.
This is a trigger for REVOLUTION indicating that the help request is being executed. After
a delay given by the attribute "time required" of the help request REVOLUTION displays a
message to both involved users to confirm the execution of the help request and rate the
other counterpart.
REVOLUTION uses a specific an existing cordova plugin to achieve this functionality:
 https://github.com/cowbell/cordova-plugin-geofence
Operating systems manufacturers have been putting in a lot of effort to these geofencing
APIs in the last years. Especially being battery efficient has been a big goal.
REVOLUTION does not have enough data yet to judge whether the value that this
functionality is adding is worth the additional battery drainage. This is subject of the
planned field trials.

D2.5 Solution Design

 REVOLUTION 21

6.3 Structure of the Client App

The Revolution client application runs on portable devices featuring different operating systems
and is designed for small displays. An iPhone 5s and a Nexus 5 are used for development
featuring a 4 inch display and a 4.95 inch display respectively. With these devices, two of the major
platforms namely iOS and Android are addressed thus allowing Revolution to run on the vast
majority of smartphones currently available.

This section focuses on the internal architecture of the Revolution application by explaining the
following three aspects in greater detail: general application architecture, internal app structure and
notable app features.

6.3.1 General Architecture

Revolution has been developed using the Ionic framework. To develop smartphone apps for
different platforms, one either has to develop native apps specific to exactly one platform or
choose a hybrid approach. The latter has the advantage that an app is developed once and can be
converted to run on multiple platforms with little extra effort. The Ionic framework allows exactly
that: develop once and deploy on multiple platforms such as iOS, Android and Windows Phone. To
achieve this platform compatibility, Ionic uses technologies every smartphone supports and thus is
able to offer a modern and flexible alternative to developing apps native. To take advantage of
existing work and knowledge, Ionic combines existing software while adding functionality mainly
addressing the app’s look and feel and UI interaction of the app to the mix.

Ionic is built on the Cordova platform which in turn uses web technologies that run in a target
device’s web view while maintaining the look and feel of a native app. Web standards are
supported by most smartphone platforms including iOS and Android meaning that such devices
understand technologies such as HTML, CSS and JavaScript. The interface is typically designed
using HTML and CSS and the functionality with JavaScript. To get access to device specific
functionality such a sensors or the contact list, Cordova uses plugins: a plugin typically offers a
JavaScript API for the web view to interact with and another part containing the JavaScript
equivalent code in a language the device platform understands.

To make it easier to build an app’s frontend, Ionic is based on AngularJS. The latter connects
HTML, CSS and JavaScript and introduces concepts and structures to tie these three together in a
consistent way. Together with Ionic’s stylesheets optimized for mobile layouts, the already familiar
functionalities provided by Cordova and AngularJS offer a compelling alternative to develop
smartphone applications.

The last step is to tie together the different parts of the developed app into one application and its
platform specific structures to actually run on a smartphone. When developing the application on
the computer, its structure is optimized for development. To build the smartphone app, Ionic offers
processes that convert the development structure into one the smartphone understands. To do so,
Ionic takes advantage of existing applications that execute these build processes such as Gulp.
Once build, the developed app can be copied onto a smartphone for local testing and/or distributed
via the existing market platforms such as iOS app store and/or Google Play.

6.3.2 Internal App Structure

To develop Revolution, we choose to group its content by topic (so called states in Ionic). The
state basically represents a screen such as the login screen with its interface definitions and
associated functionality. The seven states are in seven separate folders each containing the
related HTML and JavaScript files. Revolution also uses an index.html containing all the
references to the used resources such as the aforementioned states’ files.

D2.5 Solution Design

 REVOLUTION 22

Another concept provided by Ionic and used by Revolution is directives. A directive is a component
building block that can be used at different places in the code without having to rewrite the code.
An example of such a building block is Revolution’s own progress bar including its interface
definitions (written in HTML) and associated functionality (written in JavaScript). There are three
directives in the client app and they are referenced seven times.

Revolution uses already existing and newly developed services that allow functionality to be used
across the app. One already existing service used by Revolution is a translation service allowing
easy integration of different languages and switching between them. Another existing service is
RESTangular which allows easy communication with the backend server by providing common
GET, POST, DELETE and UPDATE requests. The user service is a newly created one which
encapsulates the functionality associated with a user such as log in, log out, update, get
information and many more.

Revolution uses different plugins to access phone specific functionalities. An overview is provided
in Table 1.

Table 1 The plugins used in Revolution.
Plugin Purpose
com.google.playservices Required for Google features such as Google

Maps

com.ionic.keyboard Makes interacting with the keyboard easier

com.phonegap.plugins.PushPlugin Enables to receive and process push
notifications.

cordova-plugin-whitelist Controls which URLs the WebView itself can
be navigated to.

org.apache.cordova.camera Accesses the phone’s camera.

org.apache.cordova.console Add additional functionality to the console.log()
command.

org.apache.cordova.device Defines global object containing information
about the device's hardware and software

org.apache.cordova.file Implements a File API allowing read/write
access to files.

org.apache.cordova.file-transfer Manages file uploads such as the upload of a
new profile picture.

org.apache.cordova.geolocation Provides information about the device's
location, such as latitude and longitude

org.apache.cordova.globalization Obtains information and performs operations
specific to the user's locale, language, and
timezone.

cordova-plugin-statusbar Customises the device’s status bar

mobi.moica.whatsapp Integrates WhatsApp funtions

com.cordova.plugins.sms Allows to easily send SMS

cordova-plugin-crosswalk-webview Makes Cordova application use the Crosswalk
WebView instead of the System WebView

cordova-plugin-splashscreen Displays and hides a splash (or load) screen
during application launch

D2.5 Solution Design

 REVOLUTION 23

cordova-plugin-media Enables Revolution to record and play back
audio files on a device

https://github.com/cowbell/cordova-plugin-
geofence

Geofencing API for Android and iOS

6.3.3 Offline Capabilities

The output of the requirement analysis phase has shown that offline capabilities can only provide
very limited value to a Realtime volunteering Online solution, because - well - it should be realtime
and online.

However there is a small, very specific part of REVOLUTION that needs to support offline
capabilities. When a help request is settled – meaning a requester has accepted a volunteer – and
before this request is fulfilled, it is crucial that both, the requester and the volunteer have access to
all data of this help request, especially the contact information and the place where the request
should be fulfilled needs to be available at all times.

REVOLUTION solves this by storing this specific set of data into the webview local storage of the
phone and it offers a very limited functionality set when the device is offline. In offline mode
REVOLUTION allows to look at two lists:

• my help requests

• my applications

This offline data is updated whenever the app gets the data in online mode.

Offline capability is planned to be implemented in Iteration 3.

6.3.4 App Features

There are a number of features specific to the Revolution application. In this section, the user
interface, app permissions and other notable features are introduced.

The UI is based on the wireframes developed with XIM (section 5.2). All delivered wireframes have
been implemented resulting in 22 HTML files each dedicated to a screen. Adding the 39 JavaScript
files defining the functionality behind the interface, over 10.000 lines of code have been written.

The Revolution client app requires several permissions to run properly. Permissions are necessary
as they ensure that any application neither has the right to anything that impacts other
applications, the operating system or the user. For the Revolution app, there are 16 required
permissions for Android and 6 for iOS. Among these permissions are Internet access, read and
write local storage and phone contacts access rights.

6.3.4.1 Special App Features: Google Maps integration

A crucial visual app element is the map showing the locations of the help requests. By looking at
the map, users who want to help see the open help requests nearby. There are different maps
services publicly available such as Google Maps, Leaflet, Mapbox and OpenStreetMap. A more
detailed comparison can be found here: http://www.creuna.no/blogg/leaflet-mapbox-a-google-
maps-competitor/. We chose Google Maps because of the experiences we already have in the
consortium and the additional Google APIs like Google Places and Geocoding that are used in the
application. Pricing is not an issue as the services are nearly free for our required usage.

D2.5 Solution Design

 REVOLUTION 24

Figure 1 Revolution’s help screen. The current user location is shown as well as a help request

including its information box.

Using the Google Maps API for Revolution allowed the easy integration of a variety of features that
come with the API. The custom styled map is part of one of the central app screens: the help
screen (Figure 1). It features a map showing the points of interest including the user’s position and
help requests. The map is positioned depending on the user’s location and the help request in
close proximity using the Geolocation service. The locations are labelled using markers which
indicate different help request categories. In addition, information boxes are shown upon a click on
a marker detailing the request’s category and time. Besides communicating the help request’s
location and category, the marker is a link to navigate to the request’s detailed view. Too many
markers in close proximity are grouped together at lower zoom levels and split again when the
zoom level is sufficiently high.

Implementing the map using the Google Maps API was a straight forward and problem free
experience. Because of the hybrid nature of the Revolution app it was not obvious which problems
will arise when using 3rd party APIs. To our surprise little code is needed to achieve quite complex
functionality on maps.

6.3.4.2 Special App Features: Seamless communication integration

Revolution’s main objective is to bring people seeking help and those offering together in a timely
manner. To bring people together Revolution offers them to communicate via existing and already
familiar channels such as calling, SMS, email and WhatsApp. Rather than having to remember
specific contact details, these communication functionalities are accessed via buttons within the
Revolution application.

Implementing the across communication channels functions was more challenging than expected.
Unique URL-schemes each representing a specific communication channel are used to invoke a
corresponding channel. Unfortunately, these URL-schemes are not properly standardized and
support on different device types and versions is varying; especially Android is making this a lot
more difficult than it should be. Of the arising issues, proper permission settings were the most
challenging: there is very little and only very inconsistent documentation available. There are at
least three different permission types that seem to be involved:

§ The permission specifying the access rights of the web view specified in the config.xml

§ The permission specifying the access rights the native app is requesting from the operating
system specified in the config.xml also

§ The Content Security Policy (CSP) permission set in the index.html META tag

D2.5 Solution Design

 REVOLUTION 25

§ The user settings on the smart phone

Instead of using the URL-schemes we ended up using two Cordova plugins namely
mobi.moica.whatsapp and com.cordova.plugins.sms.

6.3.4.3 Special App Features: Internal direct Communication Channel

An internal communication channel like a chat / bulletin board, scoped to one help request
between a help requester and a potential volunteer is planned to be added in the
Development iteration 3. Screen designs have been prepared and a data model has been
developed for this.

First user feedback has now shown that most users prefer to use existing communication
channels they already know like Phone, SMS, WhatsApp or email instead of "just another
chat/messaging application". This user feedback is being confirmed as part of the Usability
tests.
Therefore integration of this feature has been postponed until a confirmed user feedback
is available. Depending on the user feedback this feature might be swapped out and as a
replacement the integration with existing communication channels might be further
improved.

6.3.4.4 Special App Features: Speech recognition

As part of the initial requirements it is planned to integrate speech recognition into the
REVOLUTION app. Since those requirements have been written as part of the
REVOLUTION proposal the two mobile operating systems Android and iOS have
progressed tremendously in this area. As a consequence adding speech recognition into a
mobile app has become a very simple task. All the needed APIs are easily available.

Business and Requirement analysis conducted by the consortium partners has shown that
the area in REVOLUTION that would most benefit from Speech Recognition is "entering a
help request". Therefore it is planned to add Speech recognition abilities to this screen as
part of Iteration 4.

6.4 Web Frontend

REVOLUTION will use a web frontend for two distinct purposes:

• Content Management and Administration App:

We envision a restricted management application where administrators can review existing
help requests and applications, evaluate the service usage, review user's actions, ban
users who are abusing the side and communicate with users

The Administrational information is only needed as soon as we start a larger trial – for
testing and usability tasks it is possible to rely on information that the Youpers Platform
provides as is. Short term we can also use specific database queries to get the needed
information.

Timeframe for this app: Iteration 4 or after the AAL project.

D2.5 Solution Design

 REVOLUTION 26

• Web App for users (team leaders and participants)

To more easily reach more users we may also need an access to the Revolution service
through large-screen web browsers, predominantly used on corporate desks.

6.4.1 Architecture of the web app components

The web apps will be based on the YOUPERS standard web app architecture. This is a "Single
Page App" (SPA) talking to the same API as all our mobile clients. This ensures that the same
security and privacy measures are in effect for all clients.

The main framework used is angular.js, which is also the main building block of the ionic
framework used for our mobile applications. Therefore we will be able to reuse a large part of the
code written for the mobile apps also in the Web app.

7 External Interfaces

In the first and second iteration of REVOLUTION, no external interfaces will be deployed. It is
planned, to use a activity tracking provider to improve the smart matching algorithm. State of the
art API-programming will be used.

Furthermore third Party Identity Providers could be added – but only when an end user need is
clearly identified.

This chapter will be amended as a preparation of iteration 3.

8 System Integrity Controls

Sensitive systems use information for which the loss, misuse, modification of, or unauthorized
access to that information could affect the conduct of programs, or the privacy to which individuals
are entitled.

Developers of sensitive systems are required to develop specifications for the following minimum
levels of control:

• Internal security to restrict access of critical data items to only those access types
required by users

• Audit procedures to meet control, reporting, and retention period requirements for
operational and management reports

• Application audit trails to dynamically audit retrieval access to designated critical data

• Standard Tables to be used or requested for validating data fields

• Verification processes for additions, deletions, or updates of critical data

Ability to identify all audit information by user identification, network terminal identification, date,
time, and data accessed or changed.

D2.5 Solution Design

 REVOLUTION 27

Youpers follows these standards and implements the mentioned system integrity controls for all
"production" systems and services. Any system holding data of real users that are not explicitly
instructed to only enter test data into that system is considered a "production" system.

For REVOLUTION a "production" system will be set up as soon as a User Trial will be conducted –
currently planned after iteration 3.

