

AMBIENT ASSISTED LIVING JOINT PROGRAME

AAL-2013-6-039

SeniorLudens

Serious Games development platform for older workforce
training and intergenerational knowledge transference

D2.5

Serious Games development engine
(1)

Workpackage

WP2 – Serious games development engine design and
implementation

Lead beneficiary INDRA

Editor(s)

Dani Tost- CREB-UPC

Ariel von Barnekow – CREB-UPC

Núria Bonet Codina – CREB-UPC

Salvador Aguilar - INDRA

Contributor(s) Stefano Puricelli - CBIM

Reviewer(s)
Marije Blok – KBO

Salvador Aguilar - INDRA

Release Date 03/2015

Version V1.0

Circulation
Project Partners, AAL Control Management Unit, and National
Funding Agencies.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 2

WP2 – Serious games development engine design and implementation

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 3

WP2 – Serious games development engine design and implementation

Table of Contents

ABSTRACT ... 4

1- SENIOR LUDENS GAME KIT DOCUMENTATION ... 5

1.1- INSTALLATION .. 5
1.1.1- Install the Gamekit for Unity .. 5

1.1.1.1- Requirements ... 5
1.1.1.2- Obtain the Game kit .. 6
1.1.1.3- Obtain the Game kit SDK .. 6

1.2- CREATE A NEW WORLD .. 7
1.2.1- Before you start ... 7
1.2.2- Instructions ... 7

1.2.2.1- Basic setting for the creation of a new world .. 7
1.2.2.2- SeniorLudens project files ... 11
1.2.2.3- Create a new warehouse .. 14
1.2.2.4- Define the world ... 14
1.2.2.5- Create a scene .. 15
1.2.2.6- Create the user’s avatar .. 17

1.3- MODIFY A WORLD .. 20
1.3.1- Before you start ... 20

1.3.1.1- Who is able to modify a world and why?... 20
1.3.1.2- Learn about the existing resources .. 20

1.3.2- Add an object to a world .. 20
1.3.3- Modify existing objects .. 22

1.3.3.1- Create a new visual style for an object ... 22
1.3.3.2- Create a new state of an object .. 23
1.3.3.3- Add an existing behaviour to an object... 24
1.3.3.4- Create a new action for an object ... 25

1.3.4- Remove objects from your world ... 25
1.3.5- Create a new object ... 25

1.3.5.1- Create a different object similar to an existing one .. 25
1.3.6- Modify a scene .. 27
1.3.7- Add a new scene to your world ... 27

1.4- MIGRATE A UNITY SCENARIO ... 28

2- INSTALL THE SCENARIO EDITOR .. 29

3- TASK EDITOR .. 30

3.1.1- Reference site .. 30
3.1.2- Introduction .. 30
3.1.3- Features ... 30

3.1.3.1- How include new blocks ... 30
3.1.3.2- Workspace ... 31
3.1.3.3- Modify within the block ... 32
3.1.3.4- Load existing task descriptor .. 33
3.1.3.5- Create new task descriptor ... 33
3.1.3.6- Put action modules in parallel .. 34

4- TRAINING PLAN EDITOR ... 35

FIGURES AND TABLES .. 36

ACRONYMS .. 37

AAL-2013-6-039

SeniorLudens

Abstract

This document aims for detailing the installation of SeniorLudens Game Engine. It can be also
considered as a user manual attached to the software pilot developed.

The Game Engine is the system in charge of automating the Serious Games creation process.
Based on the different element which comprises the SL Game Engine, this deliverable is
composed of three parts: in the first part it describes the user manual of the Game Kit (SLGK),
in the second part the Scenario Editor and in the third part the Task Editor.

All the information described in the document is available in html to support the organizations
and game designers during the game creation process.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 5

WP2 – Serious games development engine design and implementation

1- Senior Ludens Game Kit Documentation

SeniorLudens is a Serious Game Development Platform for older workforce training and inter-
generational knowledge transfer, funded by the EU program AAL-2013-6-039. The platform is
formed by multiple components and one of them is the GameKit, this documentation is about it.

To know more about the platform and the role of the Gamekit in the platform, please read
SL_Gamekit.

This part introduces the SeniorLudens GameKit and then focuses on step- by-step
instructions for the creation of games.

1.1- Installation

SeniorLudens GameKit currently only supports one game engine: Unity 3D. This section ex-
plains how to install the game kit and its dependencies in a Unity project.

Note: Please take note that, in the current stage of SeniorLudens development, the SeniorLu-
dens GameKit and warehouses are installed in intermediary servers. This will be modified in the
future since everything will be installed in the final SL server. Therefore, these instructions will
need to be updated when the SeniorLudens GameKit will be uploaded to the SeniorLudens
platform.

1.1.1- Install the Gamekit for Unity

1.1.1.1- Requirements

To use the game kit, you must install the following programs:

 Unity 3d 4.64f

 Git

 Python >= 3.3 1

 Blender 2

Why Unity 4.6.4f1?

The reference version of Unity 3D for developing games with the SeniorLudens GameKit is
4.6.4f1 (99f88340878d), however any minor version from the 4.6 branch should work and we
recommend to use the latest version from this branch before opening to the public a new game.

 Download links Windows Mac

 Release notes 4.6.4

 API http://docs.unity3d.com/462/Documentation/ScriptReference/index.html

 API History http://docs.unity3d.com/ScriptReference/40_history.html#4-6-0

The development of the game kit started with version 4.5.0 (27 May 2014), since the
announcement of the new UI on version 4.6 we were expecting it. We tried it just after the
release, on April, and we found some issues. We decided to wait few minor versions, finally we
migrated from 4.5.5 to 4.6.3, few weeks later unity announced the public release of a new major
version 5, at this point we decided to not upgrade to 5 and stay with 4.6 until autumn, we did a

http://seniorludens.eu/
http://www.aal-europe.eu/projects/senior-ludens/
http://unity3d.com/
http://unity3d.com/get-unity/download/archive
https://git-scm.com/
https://www.python.org/downloads/
https://blender.org/
http://unity3d.com/get-unity/download?thank-you=update&download_nid=15572&os=Win
http://unity3d.com/get-unity/download?thank-you=update&download_nid=15572&os=Mac
http://unity3d.com/unity/whats-new/unity-4.6.4
http://docs.unity3d.com/462/Documentation/ScriptReference/index.html
http://docs.unity3d.com/ScriptReference/40_history.html#4-6-0
http://blogs.unity3d.com/2014/06/30/unity-4-6-new-ui-world-space-canvas/
http://blogs.unity3d.com/2014/06/30/unity-4-6-new-ui-world-space-canvas/
http://blogs.unity3d.com/2015/03/03/unity-5-launch/

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 6

WP2 – Serious games development engine design and implementation

minor upgrade to 4.6.4 and due to the fast release cycle of the following minor versions we
decided to not.

Note: We plan to migrate to Unity 5 during September 2015, or at least upgrade to the newest
minor version of the 4.6 branch.

1.1.1.2- Obtain the Game kit

You can obtain the game kit for Unity cloning the repository SeniorLudens Uni-
tyGameKit:git@movibio.lsi.upc.edu:seniorludens/unity.git inside your Assets folder, with the
following commands:

Clone the gamekit

git clone git@movibio.lsi.upc.edu:seniorludens/unity.git SeniorLudensGameKit

Init gamekit submodules

cd SeniorLudensGameKit

git submodule update --init

Note: If your project uses git as source management control, you will prefer to add the gamekit
as a submodule 3 instead of cloning the repository:

git submodule add git@movibio.lsi.upc.edu:seniorludens/unity.git Assets/SeniorLuden

Init gamekit submodules

cd SeniorLudens

git submodule update --init

1.1.1.3- Obtain the Game kit SDK

The SeniorLudens Gamekit SDK extends the Unity Editor to improve the development
experience with the SeniorLudens GameKit, its features are explained in the section
gamekitunity3d.

Note: The following code expects to have Python installed, we recommend using Python 3.4
(amd64).

Warning: Once the game kit becomes more mature, we will provide it as an asset importable to
Unity. By the moment the unique way is to obtain it directly from its repository.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 7

WP2 – Serious games development engine design and implementation

To install it you have to clone the SeniorLudens UnityGamekitSDK:
git@movibio.lsi.upc.edu:seniorludens/unitysdk.git to your Assets/Editor folder, if you are inside
your assets folder you can do it with:

Clone the gamekit

git clone git@movibio.lsi.upc.edu:seniorludens/unitysdk.git Editor/SeniorLudensGame
pip install -r Editor/SeniorLudensGameKit/requirements.txt

Or if you prefer to use a submodule:

Clone the gamekit

git submodule add git@movibio.lsi.upc.edu:seniorludens/unitysdk.git Assets/Editor/S pip
install -r Assets/Editor/SeniorLudensGameKit/requirements.txt

Finally you have to install manually lxml 4, if you are using MS Windows, we recommend you to
use an unofficial build of lxml:

pip install "http://www.lfd.uci.edu/~gohlke/pythonlibs/3i673h27/lxml-3.4.4-cp34-non

1.2- Create a new world

1.2.1- Before you start

Every time a new virtual environment is needed, a new SeniorLudens world (see SL_worlds)
must be built. These instructions explain how to do it. If you already have a world and you want
to add it some objects or actions, go to “Modify a world” section. If you have a Unity3D scenario
that you want to use in SeniorLudens, follow to “Migrate a Unity Scenario” section. In any case,
before you start, read Section Who is able to modify a world and why? subsections to make
sure that you are aware of the roles and permissions in the SeniorLudens platform.

Creating a world means not only creating a 3D scenario, but also organizing it in the very
specific way that SeniorLudens GameKit needs in order provide the required functionalities. In
particular, you will need to create a new Unity3D project, do some settings, create a warehouse
(see warehouses), scenes 1 and add the basic structural objects. After that, the world core will
be created and you will be able to improve it adding objects and behaviours following the
instructions of Modify a world.

Please, follow the instructions sequentially, otherwise you may end in a deadlock.

1.2.2- Instructions

1.2.2.1- Basic setting for the creation of a new world

In this document, you will learn how to pull the needed files from the git repository and how to
create a new Unity3D project for your game.

1. Open http://movibio.lsi.upc.edu/gitlab/groups/seniorludens
2. In the right menu, select New Project (green button).
3. Follow the step-to-step instructions: specify the path of the project and a short

description. The namespace is seniorludens (default) and the scope is private. Confirm.
4. Open a new git window or console and follow the instructions step-by-step: general

setting the first time and create a repository.
5. Create a directory called src the project directory, this will be the folder the Unity

Project.
6. Open Unity -> File -> New Project and indicate the src directory.

http://lxml.de/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://www.lfd.uci.edu/~gohlke/pythonlibs/3i673h27/lxml-3.4.4-cp34-non
http://movibio.lsi.upc.edu/gitlab/groups/seniorludens

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 8

WP2 – Serious games development engine design and implementation

7. Automatically, various directory will be created inside src, one of them called Assets will
contain all the resources of the project.

8. Download the submodules: SeniorLudens/warehouseSL and SeniorLudens/Unity inside
the directory Assets. To do so: in a terminal, from the project’s root directory, write: git
submodule add <path of the submodule inside gitLab> Assets/file_name. Download
core and *unity in a common directory that you will call SeniorLudens. specifically, do:

git submodule add git@movibio.lsi.upc.edu:seniorludens/warehouseSL.git src/Assets/w
git submodule add git@movibio.lsi.upc.edu:seniorludens/unity.git src/Assets/SeniorL git
submodule add git@movibio.lsi.upc.edu:seniorludens/unitysdk.git src/Assets/Edit

9. In the directory src/Assets/SeniorLudens, do:

git submodule update --init

10. In order to avoid uploading unneeded files, add the following contents to the .gitignore:

http://git-scm.com/docs/gitignore

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 9

WP2 – Serious games development engine design and implementation

If you prefer you can download it from: SeniorLudens .gitignore

11. Modify the editor project settings Unity: Edit -> Project Settings -> Editor to use text

serialization and visible metafiles, as show in the next image:

##########################

SeniorLudens .gitignore

v1.0

###########################

Unity ### [Ll]ibrary/ [Tt]emp/ [Oo]bj/

Autogenerated VS/MD solution and project files

.csproj

.unityproj

.sln

.suo

.user

.userprefs

.pidb

.booproj

#Unity3D Generated File On Crash Reports sysinfo.txt

Other generated files bin/

obj/

Blender####

*.blend?

*.blend?.meta

Distribution files ####

dist/

Docs/

Testing ###

coverage/

TestResult.xml

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 10

WP2 – Serious games development engine design and implementation

Figure 1 Enable Visible Metafiles

12. In Unity, define the SeniorLudens settings:

 Edit -> Project Settings -> Input -> in the Inspector panel -> Axes:

Set parameter Fire1 to PrimaryAction
Exchange the values of parameter Positive Button and Alt Positive Button
Set parameter Fire2 to SecondaryAction

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 11

WP2 – Serious games development engine design and implementation

Figure 2 Set default actions

13. Do not close your Unity3D project, just proceed to the next step to create the basic
SeniorLudens project files . Remember that from now on, you should periodically, add
your project files, make a commit and push it to your repository:

 git add (whatever needed, check with git status)

 git commit

 git push

1.2.2.2- SeniorLudens project files

A SeniorLudens project needs the following files:

• myprojectConfiguration.cs that contains the definition of the actions that are

specific actions of your world.

• myprojectWorld.xml that defines all the objects of your world

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 12

WP2 – Serious games development engine design and implementation

• scenarioConfiguration.xml that describes the initial content of all

the scenes of your world. 1

• For each task:

mytask.xml that describes the contents of a task. 1

1. Create the C# file MyProjectConfiguration.cs. By now, just copy the file

enclosed below. Do not forget to substitute MyProject by the name of

your project.

using SeniorLudens.Unity;

public class MyProjectConfiguration :

SeniorLudensUnityAppConfiguration {

public override void Configure

(SeniorLudens.Core.Application app)

{

// Configure your application here adding

your custom behaviou

}

}

2. Create the xml file MyProjectWorld.xml as shown below. As you can

see it is almost empty. It only includes a default object called room.

With this you have enough right now, so just copy it as it is. Later, you

will add the definition of all the objects of your world after this

definition.

3. Create the xml file scenarioConfiguration1.xml. By now, this file is also

almost empty. Within the tags <positions> </positions> you’ll put the

initial positions of the instances of the objects existing at the beginning

of the game in each scene of the world.

<?xml version="1.0" encoding="UTF-8" ?>

<world>

<objectdef id="room">

<states default="decoration">

<state name="decoration"></state>

</states>

</objectdef>

</world>

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 13

WP2 – Serious games development engine design and implementation

4. Create a first task FirstDemoTask.xml that simply closes the game after a lapse of time.
You can copy the one below. Try to understand it. It has only the introduction step and
one track composed of a sequence of three blocks. The first block is a conditional block
that requires waiting 60 seconds. The second block is a system action consisting of
showing the message ‘Bye!’. Finally, the third block is again a condition of a waiting
time of 20 seconds.

5. In the next step you will create a warehouse for your world.

<?xml version="1.0" encoding="UTF-8" ?>

<task>

<meta>

<name>Test task</name>

</meta>

<introduction>

<track>

<sequence>

<condition>

<expression>

<wait>60</wait>

</expression>

</condition>

<action>

<subject>system</subject><verb>setTextPro

perty</verb><directobject>message</directobject

>

<param name="text">Bye!</param>

</action>

<condition>

<expression>

<wait>2</wait>

</expressi

on>

</condition>

</sequence>

</track>

</introduction>

</task>

<?xml version="1.0" encoding="UTF-8" ?>

<scenarioconfig>

</scenarioconfig>

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 14

WP2 – Serious games development engine design and implementation

1.2.2.3- Create a new warehouse

In order to create a new warehouse, you just need to create the directory warehouseMyWorld

in Assets. This warehouse will contain the objects that are specific to your world, have been

designed for it and are not shared by any other world. In your world, you will use the objects of

this warehouse and those of the SeniorLudens warehouse that are common to all

SeniorLudens projects. See warehouses to know more about the structure of the warehouses in

SeniorLudens.

1.2.2.4- Define the world

You’ve just done the Basic setting for the creation of a new world of your world. Unity 3D

provides a default scene. Use it to create a new component that represents your world.

6. In the Assets directory create a new directory called Scenes. This is

where you will store your scenes.

• Save the default scene: File -> Save Scene (choose a convenient name and

indicate the newly created direc- tory Scenes)

7. Create an empty object. Call it after your world’s name (herein

MyWorld). GameObject -> Create Empty (name it as MyWorld)

8. With the empty object selected, add the component MyWorld Configuration to it. It is the

script that you’ve created in Step SeniorLudens project files :

In the Inspector panel -> Add Component -> MyWorld

9. Configure MyWorld Configuration in the corresponding fields of the components panel.

The Game level is the name of the scene. The world file is the xml file of definition of

your world (NameWorld.xml), the scenariofile ScenarioConfiguration1.xml and the task

FirstDemoTask.xml. See the image below for the world called Yalm.

Figure 3 Configure MyWorld Configuration

1. Create a prefab with the empty object by dragging it from the hierarchy panel to the

assets directory in the Project panel at the lower part of the screen. A prefab is a

Unity3D template of the objects and its components.

2. You are now ready to work on this scene add to it structural elements and objects. We

are now ready to create a scene.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 15

WP2 – Serious games development engine design and implementation

1.2.2.5- Create a scene

Connect the scene with SeniorLudens GameKit

1. If you’ve just defined a new world (Define the world section) open it. You have already

created a new scene. Otherwise, create a new scene in your old world and save.

2. In Unity 3D create an empty object that will represent the scene. Name the empty after

the scene’s name:

GameObject → Create Empty → (name it as MySceneApp)

3. Assign the script SeniorLudens Scene to recently created object MySceneApp:

Window → Inspector → Add Component → SeniorLudens →SeniorLudens

Scene

4. Fill the corresponding fields: the configuration script is MyWorlConfiguration.cs, the
Game Server URI is http://movibio.lsi.upc.edu/seniorludens/dev and the Develop-
ment Server http://localhost:5000. See the image below where the name of the project
is Yalm.

Figure 4 Complete Scene configuration

5. Ensure that the game level parameter of your world prefab is the scene’s name.

1.2.2.5.1- Create a Skybox

A skybox is a panoramic texture that represents the background of the scene: a sky or

something similar. To create it, just follow the instructions of Unity3D Skyboxes
1
.

Summarizing:

1. Open the render settings: Edit → Render Settings

2. In the Inspector window, on the default layout at the right side, press the

Skybox Material button and search the material (e.g.: sunny1 Skybox).

Note: You can design skyboxes of your own or use those provided in the

corresponding Unity3D package Assets → Import Package → Skyboxes)

1
 http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html

http://movibio.lsi.upc.edu/seniorludens/dev
http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html
http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 16

WP2 – Serious games development engine design and implementation

1.2.2.5.2- Add lights

To start, add just a basic Unity3D light
2
, the available lights can be found on the menu under

GameObject → Light or with the keyboard Alt-g Alt-l

For example to add a directional light you will select on the menu GameObject → Light →
Directional Light ‘ or with the keyboard Alt-g Alt-l Alt-d.

1.2.2.5.3- Create your basic structure (ground and walls)

You can create them directly in Unity3D, or alternatively create them with a digital content

creation editor (e.g. Blender) and insert them in your project. In both cases, you must be

aware of the structure of the files and directory in SeniorLudens projects. Please read first

the warehouses Section. You will also need to create the definition files of the objects.

The ground and walls are not likely to be shared by any other project and thus, in general, they

will not be stored in the SeniorLudens warehouse. Thus, you will create them and store them

in your project’s warehouse in the corresponding directories as follows:

• In your project’s warehouse, create a directory called objects, and inside it create a

directory called structure. If your ground is an open-air landscape, create a directory

called landscapes. In these directories, create a directory for each of your objects (e.g.

in the structure directory create walls, roof and ground).

• Create the structure objects with Unity 3D ...

In the menu GameObject -> 3D Object –> select a plane, a terrain or whatever

needed. In the Inspector panel, modify dimensions, position and other attributes.

• ... or import them from Blender

– Read first the guidelines on how to create a Blender object to include it in a Senior-

Ludens project in Section blender_objects. This will spare you a lot of time!

– Save the .blend in the newly created directory.

– In Unity 3D, drag the object from the Project to Scene and modify its property in

Inspector panel.

After that, in both cases perform the following steps following the steps described in Section

Unity_objects:

• Add the VisualObject component

• Add the Collider component

• Mark Is Trigger

• In the Inspector panel mark the static flag

• Create an .xml file with the definition of the object.

• Create the prefab

2
 http://docs.unity3d.com/Manual/class-Light.html

http://docs.unity3d.com/Manual/class-Light.html
http://docs.unity3d.com/Manual/class-Light.html

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 17

WP2 – Serious games development engine design and implementation

1.2.2.5.4- Add the definitions of the structural objects in the file
ProjectWorld.xml

In the file YourProjectNameWorld.xml that you have created in the previous steps, add the
definitions of the structural objects of the scene. For example:

1.2.2.5.5- Register the scene

Just skip this step by now until SeniorLudens supports multiscenes.

1.2.2.5.6- Add objects

To add objects in your scene, follow Section Add an object to a world section.

1.2.2.6- Create the user’s avatar

SeniorLudens games are first-person perspective. This means that the environment is rendered

from the point of view of the player’s avatar. This avatar is a special SeniorLudens object

composed of a camera and a very simple bounding box body used to control collisions. The

avatar’s camera is used at each frame to render the scene.

6. Add the user’s avatar to the scene:

Look for the object avatar in the SeniorLudens warehouse. Pick it in the
Project panel and drag the avatar prefab to the Scene. In the Inpector panel,
adjust position and rotation.

7. Remove the object Main Camera. You don’t need it anymore, because you will use the

<?xml version="1.0" encoding="UTF-8" ?>

<world>

<objectdef id="ground">

<states default="decoration">

<state name="decoration">

<action name="navigate"

function="place"/>

</state>

</states>

</objectdef>

<objectdef id="wall">

<states default="decoration">

<state name="decoration">

<action name="navigate"

function="place"/>

</state>

</states>

</objectdef>

</world>

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 18

WP2 – Serious games development engine design and implementation

avatar’s camera.

8. Check that you can observe the scene from the avatar’s perspective:

Press Play and move the mouse. You should be able to rotate the view direction.

You’ll probably get various error messages in the Console panel. Don’t care

about them, you’ll fix them in the next steps.

9. Add the definitions of the avatar to the project definition file myprojectWorld.xml (see

SeniorLudens project files). Since the avatar is a compound of objects, you must add

the definition of each of the parts that you want to be able to refer to in the game logics.

In general, it is enough to define the GUIcamera that composes the avatar’s main camera

and the avatar itself. Thus, add the following peace of definitions to the project definition

file.

10. Setup the navigation:

(a) Check that all the objects that won’t move during the game (e.g the ground and

the walls) are static.

With the object selected, check static in the Inspector panel (at top right).

(b) For all static objects, define if the avatar will be allowed to navigate

automatically towards it or not.

With the static object selected, in the Window submenu of the main

menu, select the Navigation option. In the Navigation panel, select

the Navigation layer. Choose Default if you want to allow

navigation towards the object and Not walkable otherwise. For

instance, with the object ground selected, choose: Navigation Layer

-> Default.

(c) At the bottom right of the Navigation tab, press the button Bake.

<objectdef id="GUICamera">

<states default="decoration">

<state name="decoration" model="GUICamera"/>

</states>

</objectdef>

<objectdef id="user">

<states default="motionless">

<action name="quit" function="subject"/>

</state>

<state name="motion">

<action name="stopNavigation"

function="subject"/>

</state>

<state name="staticCamera">

<action name="lockCamera" function="subject"/>

</state>

</states>

</objectdef>

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 19

WP2 – Serious games development engine design and implementation

You’ll be able to see in blue the navigation mesh
3
.

(d) Adjust the mesh by tuning the parameters:

• Radius: the proximity margin to the obstacles. Be careful with this value:

if it is too large, you won’t be allowed to pass through narrow doors. A

good value according to SeniorLudens scenarios scale is 0.2

• Height: a good value is 1.8. If it is too high, the avatar won’t be able to

pass through doors.

11. Verify that the avatar navigates and recognizes the different scene’s objects.

Press Play and click on the object you want to go to. On the bottom

of the screen a message will indicate where you are navigating to.

1.2.2.6.1- Configure the avatar

Select the avatar and in the Inspector panel, in the Nav Mesh Agent component, you can

modify interesting features:

1. Speed: navigation speed [p.ex: 1]

2. Stopping Distance: Distance to the clicked object at which the avatar stops

Note: Apparently, the minimum Stopping Distance is 0.8. Below, the behaviour is as if it was 0.

1.2.2.6.2- Configure the avatar’s camera parameters

Select Main Camera in the avatar compound,. In the panel Inspector modify the component

Camera, for instance, the clipping planes and the type of projection.

3
 http://docs.unity3d.com/Manual/nav-InnerWorkings.html

Warning: Choose carefully the distances, because if they are too large, the objects may all fall

out of the scope of the avatar.

Warning: If it doesn’t work, check that the object you want to go to has a collider. In general a
Box Collider is enough. However, if the object is a closed space (a room, for instance) and the
avatar is inside, you need to put a box collider per wall or a Mesh collider. Check also that the
flag IsTrigger is on.

http://docs.unity3d.com/Manual/nav-InnerWorkings.html

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 20

WP2 – Serious games development engine design and implementation

1.3- Modify a world

1.3.1- Before you start

1.3.1.1- Who is able to modify a world and why?

Your organization is provided with a world composed of a set of objects and a set of scenes
(scenario). Using the Scenario Editor, you are able to create graphically configurations of the
scenes based on existing objects of the world. Using the Task Editor, you are able to define
tasks in a specific configuration of your world.

If you are missing objects or behaviours in your world, you will need to ask for them to the
SeniorLudens management board. They will create the objects, program the new behaviours
and include them in your world.

In this document, we explain how to modify a world adding new objects and new functionalities.
You will only be able to this task if you have access to the SeniorLudens Game Kit. You must
be familiar with Unity3D to do it. Skip this document if you are simply willing to modify a
configuration of the scenario and use the Scenario Editor instead.

If you need to create a new world from scratch continue reading this section and then jump to
Section Create a new world.

1.3.1.2- Learn about the existing resources

The objects available in your world come from two repositories:

 the SeniorLudens repository, available in all the SL projects.

 your own project repository.



These repositories are in the Assets directory: warehouseSL and warehouseProject. Take a
look inside and look the available resources. They are classified according to their category:
food, accessories, construction etc.

Note: May be you already have what you need!! See SeniorLudens Warehouses section to

know more about the structure of these repositories.

Whether you create new objects or modify them you need to know the concepts of
SeniorLudens object, Visual Object, Unity Objects and Prefab.

1.3.2- Add an object to a world

In this section you will learn how to add an existing object stored in a warehouse to your world. If
you want to create a new object from scratch, go to Create a new object section.

Adding an object to a world will allow users of the Scenario Editor to create instances of that
object for different scene configurations.

There are two ways of adding an object to a world: either you add directly an instance of the
object in a scene of the world, or you add the object to the world without creating any instance of
it. In the latter case the object will not belong to the initial configuration of the scene, but it will be
available in the Scenario Editor to create instances of it in other configurations. Keep in mind that
in the Scenario Editor, you will only be able to manage objects that are in the world.

The core of SeniorLudens Game Kit implements a lot of actions such as to pick, to drop and
to change state. However, some objects have very specific actions or autonomous behaviour
that are not included in the core. These objects have they own scripts. When adding them in a
world, you will need to add also their actions. Follow the instructions to do it.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 21

WP2 – Serious games development engine design and implementation

To add an instance of an object to the scene:

1. Drag the prefab from the warehouse.

To add a new object to a world without adding an instance of it in a scene, follow the steps:

1. Open the scene of your world in which you are working

2. Select the empty Unity object that represents a scene of your world (MainScene, e.g.)

3. In the left-side panel, add a new entry to the Warehouse drop-down submenu:

increase the number of objects drag the prefab of the new object to the new entry.

In both cases:

1. In the world definition xml file add the description of the new object
(see SeniorLudens project files subsection). The description is available in
the warehouse in the file definition.xml just open it and cut and paste in

MyWorld.xml.

Check if the object has update scripts to implement autonomous behaviours
not included in the core. If so, they should be in a folder called scripts, and
within it in a subfolder cs. They should be named after the object’s

name. This is the case, for instance of the objects extractor. Its update

script reproduces the sound of an extractor when it is on. The script is
called extractor.cs. Take a look at the scripts and check if they are

defined on the Visual Object or on the object. In the former case, the
prefab already includes the behaviour programmed in the script, so you

don’t have to do anything. This is the case of the thermometer has a
thermometer.cs script, but defined on the ThermometreVisual. In the latter

case, you should notify the existence of the behaviour to the world. For
that, open the script Configure of MyWorld class definition, and add the

sentence app.AddType(MyObjectTypeID, typeof(MyObjectType). This is

the case of the extractor. For instance:

2. Check if the object has action scripts to implement specific reactive

actions. If so, they should also be in the folder cs of the folder scripts.

They should be named after the action’s name. For instance the object

egg has the action break implemented in the script BreakAction. You

must notify the world of the existence of this action. Open the script

Configure of MyWorld class definition, and add the new Action

(app.AddAction(new MyActionName)). For instance:

public void Configure (SeniorLudens.Core.Application app) {

app.AddAction(new SeniorLudens.Warehouse.Egg.BreakAction());

}

public void Configure (SeniorLudens.Core.Application app) {

app.AddType("Extractor", typeof(Extractor));

}

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 22

WP2 – Serious games development engine design and implementation

1.3.3- Modify existing objects

You can modify existing objects of your world by adding to them new visual styles, new

states and new actions.

1.3.3.1- Create a new visual style for an object

Your world has a ball, looking as a football ball with black and white patches. You need a
different style, with red and blue patches. The first thing that you need to think about is if the
second ball is only a variation of the first one (a different visual style) or if it is actually a
different object. For instance rugby balls and football balls may be different objects, because
they may play a different role in a training game. If you need to create a different object proceed to
Section Create a new object. Otherwise, continue in this section.

Objects have different visual styles: colours textures and graphical design. In order to add a new
graphical style you need to know how to use and create materials and how to use and create
textures.

1. First, check if you are creating a new style that didn’t exist previously in your

world or if you are simply creating an existing style for your object. In the

former case, thing carefully the name of your style. Choose it in a way that it

will be clearly identifiable. In the second case, use the existing style name.

2. Create the new 3D model that will represent the object’s new style. A new style

can be a change of material and texture or even a completely new mesh.

3. Save the new model in the folder styles following the schema warehouses.

4. If you are using Blender, do not forget to unpack the textures and store them in

the folder textures in the object’s folder. If you are using another modeler,

separate the textures in a similar way.

5. Add the new style in the object’s definition file definition.xml.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 23

WP2 – Serious games development engine design and implementation

6. Import the object in the Unity3D scene and create the prefab.

1.3.3.2- Create a new state of an object

Suppose that the tomatoes of your world have only one state: full_raw. You need to

implement the action cut and add the state half_cut_raw to the tomato if you want to

design tasks requiring to cut tomatoes. Let’s do it.

7. Create a new state. It can include:

• Texture modification: either in your object’s modeler or directly in

Unity3D.

• Mesh modification: create a new 3D model with you 3D

modeller.

• New animation: create the animation with your 3D modeler.

8. Create a prefab for every state

9. Modify the object’s definition_file and the Add the definitions of the
structural objects in the file ProjectWorld.xml section. For instance, the

<states>

</states>

<style name="kumato"> <!-- kumato will be the id of the

style -->

<name>Kumato</name> <!-- Style name -->

<description>Tomato variant named

Kumato</description>

<!-- Definition of the style's tag:

- fruit: because a tomato is a fruit

- red: the color of the tomato.

-->

<tags>fruit, red</tags>

<!-- For texture changes: -->

<visual state="STATE_NAME">

<texture>TEXTURE_IMAGE</texture>

</visual>

<!-- For mesh changes: -->

<visual state="NOM_DE_L'ESTAT">

<model>NOM_DEL_.BLEND</model>

</visual>

</style>

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 24

WP2 – Serious games development engine design and implementation

following definition file includes two states for a door object:

<objectdef id="door">

<states default="closed">

<state name="closed">

<action name="open">

<param name="animation">open</param>

<param name="state">opened</param>

</action>

<action name="navigate" function="place"/>

</state>

<state name="opened">

<action name="close">

<param name="animation">open</param>

<param name="state">closed</param>

<param name="reversed"

type="bool">true</param>

</action>

<action name="navigate" function="place"/>

</state>

</states>

</objectdef>

1.3.3.3- Add an existing behaviour to an object

Object’s behaviour depends on the actions that are enabled on them. In this section, you will
learn how to assign an existing action to a new object. For instance, add the action of
disintegration to another existing object.

1. Open the file definition.xml of an object that already has the desired behaviour and

copy the definition of the desired action.

2. Open the file definition.xml of the object to which you want to add the action. Paste

the code to every state that you want to have these actions. For instance:

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 25

WP2 – Serious games development engine design and implementation

3. Check the definition of the parameters.

1.3.3.4- Create a new action for an object

If SeniorLudens GameKit does not include any action that matches your needs, you’ll need

to implement the new action and assign it to your object.

1. Create the script of the action in C# for Unity3D and store it in the Scripts/cs folder of

the object. Use the SeniorLudens API.

2. Add the new action to the definition of the object in the object definition file definition.xml as
well as in the project definition file MyProject.xml.

1.3.4- Remove objects from your world

In general, objects should not be removed from a world unless they are erroneous. You never
know if you may need them in a future scene!

If you really want to remove an object from your world, make sure that there are no instances
of it in any of the world’s scene. Then, remove its definition from the cml world definition file
and, if it has actions and specific behaviour, remove them from the Configure method of the world
configuration class.

1.3.5- Create a new object

You can create new objects either from scratch or by taking as a reference existing objects. The
latter way is faster and convenient whenever you need to create new objects of a same family
with different aspect and name but with similar behaviour, for instance an apple having already a
pear.

1.3.5.1- Create a different object similar to an existing one

Now, imagine that you need to create a rugby ball as a different object from the already existing
football, or, your world has tomatoes, but you need peppers. A pepper is essentially the same
object as a tomato, it has the same actions (to pick, to drop...) but with different name and
aspect. Let’s create an object using another as reference.

<state name="full" model="apple">

<!-- for the state 'full' we already had the actions

navigate, pick an

<action name="navigate" function="place"/>

<action name="pick" function="directobject"/>

<action name="drop" function="directobject"/>

<!-- and we now add the action destroy -->

<action name="destroy" function="directobject"/>

</state>

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 26

WP2 – Serious games development engine design and implementation

1. Create the new 3D model

2. Unpack the textures that are needed for the new object and save them in the folder
textures within the object’s folder.

3. Copy the file definition.xml of the object that is similar to yours and modify it to adapt it to

your object. Save the file in the object’s folder.

4. Import the object to Unity3D:

• As soon as Unity3D will open, the folder Materials will be created that contains the

materials that the object uses.

• Save it as a .prefab in the folder of the new object.

3.4.1 Create a new kind of object

1. Check that the type of object that you need is not currently provided by SeniorLudens

GameKit. Recall that several different objects can be of the same type. For instance,

there may be different objects of type “door” or “chair”.

2. Create a suitable name to the new type of object. Try to be precise, thinking that even

now your object is the first of a category, may be you’ll add others of the same category

later on, so don’t call it after its category but after its intrinsic nature. For instance, if

you put the name “fruit” to an apple, then you will not be able to distinguish between

fruits. Call it apple.

3. Add to the object definition file all the states and attributes it has. Modify accordingly

the MyProjectWorld.xml file. For instance:

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 27

WP2 – Serious games development engine design and implementation

Add the description of the new object type to the documentation

1.3.6- Modify a scene

Use the Scenario Editor to create configurations of the scene: create, remove and move object
instances of your world.

If you want to modify structural elements of the scene, that you cannot edit in the Scenario
Editor, follow the steps of Section add new objects.

1.3.7- Add a new scene to your world

This section explains how to register new scenes. Currently, SeniorLudens allows you to have
only one scene aside from the introduction and conclusion, so be aware that this documentation
can change a lot.

1. First, create the scene. Do not forget to register it.

2. Then in the menu File -> Build Settings... -> drag the new scene from the Project panel
to Scenes in build.

Note: If the scene is the beginning or the end of a task, you should add it to the ProjectApp

component: With the object ProjectApp selected, in the Inspector panel, add the scene to the

suitable component of ProjectApp (e.g. to End Level if it is an end-task scene)

<objectdef id="OBJECT">

<states default="DEFAULT_STATE">

<state name="STATE_1">

<action name="ACTION_1"

function="FUNCTION_ON_SENTENCE"/>

<action name="ACTION_2"

function="FUNCTION_ON_SENTENCE"/>

<action />

</state>

<state name="STATE_2">

<action name="ACTION_1"

function="FUNCTION_ON_SENTENCE"/>

<action/>

</state>

</states>

</objectdef>

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 28

WP2 – Serious games development engine design and implementation

1.4- Migrate a Unity Scenario

If you have already built a Unity3D scenario and you want to use it in SeniorLudens, it may

be better to start first by creating a very simple world from scratch in order to understand the

processes and concepts: Create a new world section. Once you’ll have done this first

experiment, you’ll be ready to follow these instructions:

1. First install the platform: Installation

2. Apply the basic settings: Basic setting for the creation of a new world

3. Create the projects files: SeniorLudens project files

4. Add an empty world object and define the world: Define the world

5. Create an empty scene object and define it: Create a scene

6. Create a new warehouse for your project: warehouses.

7. Add the objects of your scenario to the warehouse: for every object, create a prefab

(if needed), store it in the warehouse following SeniorLudens pattern and create the

corre- sponding definition files: Create a new object.

8. For all the prefabs add the VisualObject component: Unity_objects.

9. Add the definition of all the objects in the world definition file.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 29

WP2 – Serious games development engine design and implementation

2- Install the Scenario Editor

The Scenario Editor is available as a prefab at the SeniorLudens Warehouse, in order to include
it in your world drag the prefab into your scene.

Now you have to configure some options of the scenario editor, as the scenario editor is build
using a Canvas element you have to define the camera and the render mode; we recommend
you to use the camera named GUI from the avatar and a distance of 80.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 30

WP2 – Serious games development engine design and implementation

3- Task Editor

3.1.1- Reference site

The task editor is deployed temporarily in an intermediate server located at: http://selte.cbim.it/.
It will be integrated inside the SeniorLudens Platform infrastructure. Although it is not deployed
in the final server, it is connected with the SeniorLudens Storage Server that is deployed on it.

3.1.2- Introduction

The task editor is the tool used by the trainer to design the reference task for the trainee and
define the different roles of the characters.

Deploying the full state diagram of all possible user actions is very tedious and prone to errors.
Therefore, the task editor tool will require trainers to define only the reference task, this is the
correct way of doing things.

For the reason Task Editor Tool makes use of Blockly as Visual Editor that allows users to write
flows by plugging blocks together.

The reference task is defined in terms of actions structured as sequential or parallel
compositions. Sequential compositions mean that the actions must be done one after the other,
and parallel compositions mean that a subset of the actions of the bloc must be done no matter
in which order. During the game play, all user interactions are interpreted as action queries.
The action queries are evaluated in comparison to the reference task to know if they are correct
or no. If they are correct, they are done. Otherwise, they can be done and evaluated as
incorrect or forbidden to provide a free-of error learning process.

3.1.3- Features

3.1.3.1- How include new blocks

You can find the existing set of blocks in the toolbox (Task blocks) as follow:

http://selte.cbim.it/

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 31

WP2 – Serious games development engine design and implementation

Figure 5 Toolbox which include complete set of blocks

The mandatory type blocks are as follow:

 Stage

 Track

 Sequence or At the same time

 Action

3.1.3.2- Workspace

Workspace is the section which include the blocks used to model the task

Figure 6 Task Editor working area

To inject a block into workspace is enough select the desired block from toolbox and drag it on
workspace

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 32

WP2 – Serious games development engine design and implementation

3.1.3.3- Modify within the block

3.1.3.3.1- Duplicate

This feature provides to duplicate the workspace selected block.

3.1.3.3.2- Delete

This feature provides to remove the workspace selected block.

3.1.3.3.3- Run a contextual description of block

Example:

We can try to put into the workspace the Action Block and with right click of mouse on the block
area, testing the functions as listed above:

Figure 7 How modify an action block

Meanwhile, only for types Stage and Track, you can “rename” the title of the block.

For example, we can try to put into the workspace the Stage Block and with left click of mouse
on the dropdown area, testing the function “New variable”:

Figure 8 How modify stage/track block

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 33

WP2 – Serious games development engine design and implementation

3.1.3.4- Load existing task descriptor

You can load an existing task by clicking on “go to an object” within left menu (Load existing
tasks) as follow:

Figure 9 How load existing task

3.1.3.5- Create new task descriptor

After inserting or modified an existing task, you can create and show new task descriptor simply
clicking “Creating the new TE descriptor” within the left menu (task editor) as follow:

Figure 10 How create new TE descriptor

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 34

WP2 – Serious games development engine design and implementation

Figure 11 Visualization of the new TE descriptor XML

3.1.3.6- Put action modules in parallel

Task editor is able to manage the action block also in parallel to communicate to the Training
Program Module how the action should be execute, at the same time or in sequence.

Example:

We can try to put a parallel block into a clean workspace and insert two actions block into this
one as follow:

Figure 12 How manage the action blocks in parallel

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 35

WP2 – Serious games development engine design and implementation

4- Training Plan Editor

This module has not been developed in the first iteration of development inside of the
SeniorLudens agile cycle which rules the work in the project. It will be built and integrated in the
next phase.

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 36

WP2 – Serious games development engine design and implementation

Figures and tables

Figure 1 Enable Visible Metafiles .. 10

Figure 2 Set default actions ... 11

Figure 3 Configure MyWorld Configuration ... 14

Figure 4 Complete Scene configuration .. 15

Figure 5 Toolbox which include complete set of blocks .. 31

Figure 6 Task Editor working area .. 31

Figure 7 How modify an action block .. 32

Figure 8 How modify stage/track block ... 32

Figure 9 How load existing task .. 33

Figure 10 How create new TE descriptor .. 33

Figure 11 Visualization of the new TE descriptor XML ... 34

Figure 12 How manage the action blocks in parallel... 34

AAL-2013-6-039

SeniorLudens

Date

03/2015

D2.5 - Serious Games development engine
Page 37

WP2 – Serious games development engine design and implementation

Acronyms

Acronym Explanation

SL SeniorLudens

SLGK SeniorLudens Game Kit

SDK Software Development Kit

TE Task Editor

